Matching Items (2)
Filtering by

Clear all filters

156654-Thumbnail Image.png
Description
Electrospinning is a means of fabricating micron-scale diameter fiber networks with enmeshed nanomaterials. Polymeric nanocomposites for water treatment require the manipulation of fiber morphology to expose nanomaterial surface area while anchoring the nanomaterials and maintaining fiber integrity; that is the overarching goal of this dissertation. The first investigation studied the

Electrospinning is a means of fabricating micron-scale diameter fiber networks with enmeshed nanomaterials. Polymeric nanocomposites for water treatment require the manipulation of fiber morphology to expose nanomaterial surface area while anchoring the nanomaterials and maintaining fiber integrity; that is the overarching goal of this dissertation. The first investigation studied the effect of metal oxide nanomaterial loadings on electrospinning process parameters such as critical voltage, viscosity, fiber diameter, and nanomaterial distribution. Increases in nanomaterial loading below 5% (w/v) were not found to affect critical voltage or fiber diameter. Nanomaterial dispersion was conserved throughout the process. Arsenic adsorption tests determined that the fibers were non-porous. Next, the morphologies of fibers made with carbonaceous materials and the effect of final fiber assembly on adsorption kinetics of a model organic contaminant (phenanthrene, PNT) was investigated. Superfine powdered activated carbon (SPAC), C60 fullerenes, multi-walled carbon nanotubes, and graphene platelets were added to PS and electrospun. SPAC maintained its internal pore structure and created porous fibers which had 30% greater PNT sorption than PS alone and a sevenfold increase in surface area. Carbon-based nanomaterial-PS fibers were thicker but less capacious than neat polystyrene electrospun fibers. The surface areas of the carbonaceous nanomaterial-polystyrene composites decreased compared to neat PS, and PNT adsorption experiments yielded decreased capacity for two out of three carbonaceous nanomaterials. Finally, the morphology and arsenic adsorption capacity of a porous TiO2-PS porous fiber was investigated. Porous fiber was made using polyvinylpyrrolidone (PVP) as a porogen. PVP, PS, and TiO2 were co-spun and the PVP was subsequently eliminated, leaving behind a porous fiber morphology which increased the surface area of the fiber sevenfold and exposed the nanoscale TiO2 enmeshed inside the PS. TiO2-PS fibers had comparable arsenic adsorption performance to non-embedded TiO2 despite containing less TiO2 mass. The use of a sacrificial polymer as a porogen facilitates the creation of a fiber morphology which provides access points between the target pollutant in an aqueous matrix and the sorptive nanomaterials enmeshed inside the fiber while anchoring the nanomaterials, thus preventing release.
ContributorsHoogesteijn von Reitzenstein, Natalia Virginia (Author) / Westerhoff, Paul (Thesis advisor) / Hristovski, Kiril (Committee member) / Perreault, Francois (Committee member) / Herckes, Pierre (Committee member) / Arizona State University (Publisher)
Created2018
134831-Thumbnail Image.png
Description
Graphene is a very strong two-dimensional material with a lot of potential applications in microelectromechanical systems (MEMS). In this research, graphene is being optimized for use in a 5 m x 5 m graphene resonator. To work properly, this graphene resonator must have a uniform strain across all manufactured devices.

Graphene is a very strong two-dimensional material with a lot of potential applications in microelectromechanical systems (MEMS). In this research, graphene is being optimized for use in a 5 m x 5 m graphene resonator. To work properly, this graphene resonator must have a uniform strain across all manufactured devices. To reduce strain induced in graphene sheets grown for use in these resonators, evaporated platinum has been used in this investigation due to its relatively lower surface roughness compared to copper films. The final goal is to have the layer of ultrathin platinum (<=200 nm) deposited on the MEMS graphene resonator and used to grow graphene directly onto the devices to remove the manual transfer step due to its inscalability. After growth, graphene is coated with polymer and the platinum is then etched. This investigation concentrated on the transfer process of graphene onto Si/SiO2 substrate from the platinum films. It was determined that the ideal platinum etchant was aqua regia at a volumetric ratio of 6:3:1 (H2O:HCl:HNO3). This concentration was dilute enough to preserve the polymer and graphene layer, but strong enough to etch within a day. Type and thickness of polymer support layers were also investigated. PMMA at a thickness of 200 nm was ideal because it was easy to remove with acetone and strong enough to support the graphene during the etch process. A reference growth recipe was used in this investigation, but now that the transfer has been demonstrated, growth can be optimized for even thinner films.
ContributorsCayll, David Richard (Author) / Tongay, Sefaattin (Thesis director) / Lee, Hyunglae (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12