Matching Items (387)
151833-Thumbnail Image.png
Description
The end of the nineteenth century was an exhilarating and revolutionary era for the flute. This period is the Second Golden Age of the flute, when players and teachers associated with the Paris Conservatory developed what would be considered the birth of the modern flute school. In addition, the founding

The end of the nineteenth century was an exhilarating and revolutionary era for the flute. This period is the Second Golden Age of the flute, when players and teachers associated with the Paris Conservatory developed what would be considered the birth of the modern flute school. In addition, the founding in 1871 of the Société Nationale de Musique by Camille Saint-Saëns (1835-1921) and Romain Bussine (1830-1899) made possible the promotion of contemporary French composers. The founding of the Société des Instruments à Vent by Paul Taffanel (1844-1908) in 1879 also invigorated a new era of chamber music for wind instruments. Within this groundbreaking environment, Mélanie Hélène Bonis (pen name Mel Bonis) entered the Paris Conservatory in 1876, under the tutelage of César Franck (1822-1890). Many flutists are dismayed by the scarcity of repertoire for the instrument in the Romantic and post-Romantic traditions; they make up for this absence by borrowing the violin sonatas of Gabriel Fauré (1845-1924) and Franck. The flute and piano works of Mel Bonis help to fill this void with music composed originally for flute. Bonis was a prolific composer with over 300 works to her credit, but her works for flute and piano have not been researched or professionally recorded in the United States before the present study. Although virtually unknown today in the American flute community, Bonis's music received much acclaim from her contemporaries and deserves a prominent place in the flutist's repertoire. After a brief biographical introduction, this document examines Mel Bonis's musical style and describes in detail her six works for flute and piano while also offering performance suggestions.
ContributorsDaum, Jenna Elyse (Author) / Buck, Elizabeth (Thesis advisor) / Holbrook, Amy (Committee member) / Micklich, Albie (Committee member) / Schuring, Martin (Committee member) / Norton, Kay (Committee member) / Arizona State University (Publisher)
Created2013
ContributorsMatthews, Eyona (Performer) / Yoo, Katie Jihye (Performer) / Roubison, Ryan (Performer) / ASU Library. Music Library (Publisher)
Created2018-03-25
ContributorsHoeckley, Stephanie (Performer) / Lee, Juhyun (Performer) / ASU Library. Music Library (Publisher)
Created2018-03-24
150404-Thumbnail Image.png
Description
As the use of engineered nanomaterials (ENMs) in consumer products becomes more common, the amount of ENMs entering wastewater treatment plants (WWTPs) increases. Investigating the fate of ENMs in WWTPs is critical for risk assessment and pollution control. The objectives of this dissertation were to (1) quantify and characterize titanium

As the use of engineered nanomaterials (ENMs) in consumer products becomes more common, the amount of ENMs entering wastewater treatment plants (WWTPs) increases. Investigating the fate of ENMs in WWTPs is critical for risk assessment and pollution control. The objectives of this dissertation were to (1) quantify and characterize titanium (Ti) in full-scale wastewater treatment plants, (2) quantify sorption of different ENMs to wastewater biomass in laboratory-scale batch reactors, (3) evaluate the use of a standard, soluble-pollutant sorption test method for quantifying ENM interaction with wastewater biomass, and (4) develop a mechanistic model of a biological wastewater treatment reactor to serve as the basis for modeling nanomaterial fate in WWTPs. Using titanium (Ti) as a model material for the fate of ENMs in WWTPs, Ti concentrations were measured in 10 municipal WWTPs. Ti concentrations in pant influent ranged from 181 to 3000 µg/L, and more than 96% of Ti was removed, with effluent Ti concentrations being less than 25 µg/L. Ti removed from wastewater accumulated in solids at concentrations ranging from 1 to 6 µg Ti/mg solids. Using transmission electron microscopy, spherical titanium oxide nanoparticles with diameters ranging from 4 to 30 nm were found in WWTP effluents, evidence that some nanoscale particles will pass through WWTPs and enter aquatic systems. Batch experiments were conducted to quantify sorption of different ENM types to activated sludge. Percentages of sorption to 400 mg TSS/L biomass ranged from about 10 to 90%, depending on the ENM material and functionalization. Natural organic matter, surfactants, and proteins had a stabilizing effect on most of the ENMs tested. The United States Environmental Protection Agency's standard sorption testing method (OPPTS 835.1110) used for soluble compounds was found to be inapplicable to ENMs, as freeze-dried activated sludge transforms ENMs into stable particles in suspension. In conjunction with experiments, we created a mechanistic model of the microbiological processes in membrane bioreactors to predict MBR, extended and modified this model to predict the fate of soluble micropollutants, and then discussed how the micropollutant fate model could be used to predict the fate of nanomaterials in wastewater treatment plants.
ContributorsKiser, Mehlika Ayla (Author) / Westerhoff, Paul K (Thesis advisor) / Rittmann, Bruce E. (Committee member) / Hristovski, Kiril D (Committee member) / Arizona State University (Publisher)
Created2011
ContributorsMcClain, Katelyn (Performer) / Buringrud, Deanna (Contributor) / Lee, Juhyun (Performer) / ASU Library. Music Library (Publisher)
Created2018-03-31
156654-Thumbnail Image.png
Description
Electrospinning is a means of fabricating micron-scale diameter fiber networks with enmeshed nanomaterials. Polymeric nanocomposites for water treatment require the manipulation of fiber morphology to expose nanomaterial surface area while anchoring the nanomaterials and maintaining fiber integrity; that is the overarching goal of this dissertation. The first investigation studied the

Electrospinning is a means of fabricating micron-scale diameter fiber networks with enmeshed nanomaterials. Polymeric nanocomposites for water treatment require the manipulation of fiber morphology to expose nanomaterial surface area while anchoring the nanomaterials and maintaining fiber integrity; that is the overarching goal of this dissertation. The first investigation studied the effect of metal oxide nanomaterial loadings on electrospinning process parameters such as critical voltage, viscosity, fiber diameter, and nanomaterial distribution. Increases in nanomaterial loading below 5% (w/v) were not found to affect critical voltage or fiber diameter. Nanomaterial dispersion was conserved throughout the process. Arsenic adsorption tests determined that the fibers were non-porous. Next, the morphologies of fibers made with carbonaceous materials and the effect of final fiber assembly on adsorption kinetics of a model organic contaminant (phenanthrene, PNT) was investigated. Superfine powdered activated carbon (SPAC), C60 fullerenes, multi-walled carbon nanotubes, and graphene platelets were added to PS and electrospun. SPAC maintained its internal pore structure and created porous fibers which had 30% greater PNT sorption than PS alone and a sevenfold increase in surface area. Carbon-based nanomaterial-PS fibers were thicker but less capacious than neat polystyrene electrospun fibers. The surface areas of the carbonaceous nanomaterial-polystyrene composites decreased compared to neat PS, and PNT adsorption experiments yielded decreased capacity for two out of three carbonaceous nanomaterials. Finally, the morphology and arsenic adsorption capacity of a porous TiO2-PS porous fiber was investigated. Porous fiber was made using polyvinylpyrrolidone (PVP) as a porogen. PVP, PS, and TiO2 were co-spun and the PVP was subsequently eliminated, leaving behind a porous fiber morphology which increased the surface area of the fiber sevenfold and exposed the nanoscale TiO2 enmeshed inside the PS. TiO2-PS fibers had comparable arsenic adsorption performance to non-embedded TiO2 despite containing less TiO2 mass. The use of a sacrificial polymer as a porogen facilitates the creation of a fiber morphology which provides access points between the target pollutant in an aqueous matrix and the sorptive nanomaterials enmeshed inside the fiber while anchoring the nanomaterials, thus preventing release.
ContributorsHoogesteijn von Reitzenstein, Natalia Virginia (Author) / Westerhoff, Paul (Thesis advisor) / Hristovski, Kiril (Committee member) / Perreault, Francois (Committee member) / Herckes, Pierre (Committee member) / Arizona State University (Publisher)
Created2018
ContributorsHur, Jiyoun (Performer) / Lee, Juhyun (Performer) / ASU Library. Music Library (Publisher)
Created2018-03-01
ContributorsZaleski, Kimberly (Contributor) / Kazarian, Trevor (Performer) / Ryan, Russell (Performer) / IN2ATIVE (Performer) / ASU Library. Music Library (Publisher)
Created2018-09-28
132906-Thumbnail Image.png
Description
Plastics make up a large proportion of solid waste that ends up in landfills and pollute ecosystems, and do not readily decompose. Composites from fungus mycelium are a recent and promising alternative to replace plastics. Mycelium is the root-like fibers from fungi that grow underground. When fed with woody biomass,

Plastics make up a large proportion of solid waste that ends up in landfills and pollute ecosystems, and do not readily decompose. Composites from fungus mycelium are a recent and promising alternative to replace plastics. Mycelium is the root-like fibers from fungi that grow underground. When fed with woody biomass, the mycelium becomes a dense mass. From there, the mycelium is placed in mold to take its shape and grow. Once the growth process is done, the mycelium is baked to end the growth, thus making a mycelium brick. The woody biomass fed into the mycelium can include materials such as sawdust and pistachio shells, which are all cheap feedstock. In comparison to plastics, mycelium bricks are mostly biodegradable and eco-friendly. Mycelium bricks are resistant to water, fire, and mold and are also lightweight, sustainable, and affordable. Mycelium based materials are a viable option to replace less eco-friendly materials. This project aims to explore growth factors of mycelium and incorporate nanomaterials into mycelium bricks to achieve strong and sustainable materials, specifically for packaging materials. The purpose of integrating nanomaterials into mycelium bricks is to add further functionality such as conductivity, and to enhance properties such as mechanical strength.
ContributorsWong, Cindy (Author) / Wang, Qing Hua (Thesis director) / Green, Alexander (Committee member) / Materials Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
134831-Thumbnail Image.png
Description
Graphene is a very strong two-dimensional material with a lot of potential applications in microelectromechanical systems (MEMS). In this research, graphene is being optimized for use in a 5 m x 5 m graphene resonator. To work properly, this graphene resonator must have a uniform strain across all manufactured devices.

Graphene is a very strong two-dimensional material with a lot of potential applications in microelectromechanical systems (MEMS). In this research, graphene is being optimized for use in a 5 m x 5 m graphene resonator. To work properly, this graphene resonator must have a uniform strain across all manufactured devices. To reduce strain induced in graphene sheets grown for use in these resonators, evaporated platinum has been used in this investigation due to its relatively lower surface roughness compared to copper films. The final goal is to have the layer of ultrathin platinum (<=200 nm) deposited on the MEMS graphene resonator and used to grow graphene directly onto the devices to remove the manual transfer step due to its inscalability. After growth, graphene is coated with polymer and the platinum is then etched. This investigation concentrated on the transfer process of graphene onto Si/SiO2 substrate from the platinum films. It was determined that the ideal platinum etchant was aqua regia at a volumetric ratio of 6:3:1 (H2O:HCl:HNO3). This concentration was dilute enough to preserve the polymer and graphene layer, but strong enough to etch within a day. Type and thickness of polymer support layers were also investigated. PMMA at a thickness of 200 nm was ideal because it was easy to remove with acetone and strong enough to support the graphene during the etch process. A reference growth recipe was used in this investigation, but now that the transfer has been demonstrated, growth can be optimized for even thinner films.
ContributorsCayll, David Richard (Author) / Tongay, Sefaattin (Thesis director) / Lee, Hyunglae (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12