Matching Items (3)
Filtering by

Clear all filters

135330-Thumbnail Image.png
ContributorsPowell, Devon (Author) / Gardner, Carl (Thesis director) / Scannapieco, Evan (Committee member) / Windhorst, Rogier (Committee member) / Barrett, The Honors College (Contributor)
Created2012-05
132092-Thumbnail Image.png
Description
I examine the effects of metallicity on solar mass stellar evolution, trying to replicate a previous result in Windhorst et.al., 2018, in which a zer metallicity solar mass star did not reach the AGB, and thus may turn into a helium white dwarf. In trying to replicate this result, I

I examine the effects of metallicity on solar mass stellar evolution, trying to replicate a previous result in Windhorst et.al., 2018, in which a zer metallicity solar mass star did not reach the AGB, and thus may turn into a helium white dwarf. In trying to replicate this result, I used the M.E.S.A. stellar evolution code and was unable to reproduce this result. While M.E.S.A has undergone several updates since the previous result was obtained, more current evidence suggests that this may have been a one-time occurrence, as no helium white dwarfs were produced for low-metallicity models. Nonetheless, interesting results were obtained, including a lowest metallicity value for which CNO burning does not significantly contribute during the main sequence, 1 −10 Z , which produces noticeable effects on post main sequence evolution. All models are run with no rotation, one solar mass, and a series of MESA parameters kept constant, with the only exception being metallicity. Any metallicity value listed as Nd −10 is an absolute mass fraction, and Z is relative to solar metallicity, 2d*10 −2 .
ContributorsTompkins, Scott Andrew (Author) / Windhorst, Rogier (Thesis director) / Young, Patrick (Committee member) / School of Earth and Space Exploration (Contributor) / Department of Physics (Contributor) / Barrett, The Honors College (Contributor)
Created2019-12
131662-Thumbnail Image.png
Description
The purpose of this thesis is to accurately simulate the surface brightness in various spectral emission lines of the HH 901 jets in the Mystic Mountain Formation of the Carina Nebula. To accomplish this goal, we gathered relevant spectral emission line data for [Fe II] 12660 Å, Hα 6563 Å,

The purpose of this thesis is to accurately simulate the surface brightness in various spectral emission lines of the HH 901 jets in the Mystic Mountain Formation of the Carina Nebula. To accomplish this goal, we gathered relevant spectral emission line data for [Fe II] 12660 Å, Hα 6563 Å, and [S II] 6720 Å to compare with Hubble Space Telescope observations of the HH 901 jets presented in Reiter et al. (2016). We derived the emissivities for these lines from the spectral synthesis code Cloudy by Ferland et al. (2017). In addition, we used WENO simulations of density, temperature, and radiative cooling to model the jet. We found that the computed surface brightness values agreed with most of the observational surface brightness values. Thus, the 3D cylindrically symmetric simulations of surface brightness using the WENO code and Cloudy spectral emission models are accurate for jets like HH 901. After detailing these agreements, we discuss the next steps for the project, like adding an external ambient wind and performing the simulations in full 3D.
ContributorsMohan, Arun (Author) / Gardner, Carl (Thesis director) / Jones, Jeremiah (Committee member) / Computer Science and Engineering Program (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05