Matching Items (3)
Filtering by

Clear all filters

134589-Thumbnail Image.png
Description
Radio astronomy is a subfield in astronomy that deals with objects emitting frequencies around 10 MHz to 100 GHz. The Low Frequency Array (LOFAR) is a array of radio antennas in Europe that can reach very low frequencies, roughly between 10-240 MHz. Our project was to image and clean a

Radio astronomy is a subfield in astronomy that deals with objects emitting frequencies around 10 MHz to 100 GHz. The Low Frequency Array (LOFAR) is a array of radio antennas in Europe that can reach very low frequencies, roughly between 10-240 MHz. Our project was to image and clean a field from LOFAR. The data was a 10 degree square in the sky centered at a right ascension of 10:19:34.608 and a declination +49.36.52.482. It was observed for 600 seconds at 141 MHz. To clean the field, we had to flag and remove any stations that were not responding. Using a program called FACTOR, we cleaned the image and reduced the residuals. Next we checked the validity of our sources. We checked positional offsets for our sources using the TGSS survey at 150 MHz, and corrected the declination of our LOFAR sources by a factor of 0.0002 degrees. We also fixed the LOFAR fluxes by a factor of 1.15. After this systematic check, we calculated the spectral index of our sources using the FIRST survey at 1435 MHz. We plotted this spectral index against LOFAR flux as well as redshift of the sources, and compared these to literature.
ContributorsStawinski, Stephanie Mae (Author) / Scannapieco, Evan (Thesis director) / Windhorst, Rogier (Committee member) / Karen, Olsen (Committee member) / Department of Physics (Contributor) / School of International Letters and Cultures (Contributor) / School of Earth and Space Exploration (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
132911-Thumbnail Image.png
Description
I test the hypothesis that galactic magnetic fields originate from regions of dense
star formation (Dahlem et al. 2006) by comparing maps of 120-240 MHz synchrotron emission and hydrogen alpha (Hα) emission of the tidally-interacting, edge-on, barred spiral galaxy UGC 9665. Synchrotron emission traces magnetic field strength to a rough first

I test the hypothesis that galactic magnetic fields originate from regions of dense
star formation (Dahlem et al. 2006) by comparing maps of 120-240 MHz synchrotron emission and hydrogen alpha (Hα) emission of the tidally-interacting, edge-on, barred spiral galaxy UGC 9665. Synchrotron emission traces magnetic field strength to a rough first order, while Hα emission traces recent massive star formation. UGC 9665 was selected because it was included in the LOw Frequency ARray (LOFAR) TwoMetre Sky Survey (LoTSS; Shimwell et al. (2017)) as well as the Calar Alto Legacy Integral Field Area Survey (CALIFA; Sanchez et al. (2012)). I generated vertical intensity profiles at several distances along the disk from the galactic center for synchrotron emission and Hα in order to measure how the intensity of each falls off with distance from the midplane. In addition to correlating the vertical profiles to see if there is a relationship between star formation and magnetic field strength, I fit the LOFAR vertical profiles to characteristic Gaussian and exponential functions given by Dumke et al. (1995). Fitting these equations have been shown to be good indicators of the main mode of cosmic ray transport, whether it is advection (exponential fit) or diffusion (Gaussian fit) (Heesen et al. 2016). Cosmic rays originate from supernova,
and core collapse supernovae occur in star forming regions, which also produce
advective winds, so I test the correlation between star-forming regions and advective regions as predicted by the Heesen et al. (2016) method. Similar studies should be conducted on different galaxies in the future in order to further test these hypotheses and how well LOFAR and CALIFA complement each other, which will be made possible by the full release of the LOFAR Two-Metre Sky Survey (LoTSS) (Shimwell et al. 2017).
ContributorsHuckabee, Gabriela R (Author) / Jansen, Rolf (Thesis director) / Windhorst, Rogier (Committee member) / Bowman, Judd (Committee member) / School of Earth and Space Exploration (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
148230-Thumbnail Image.png
Description

Stellar mass loss has a high impact on the overall evolution of a star. The amount<br/>of mass lost during a star’s lifetime dictates which remnant will be left behind and how<br/>the circumstellar environment will be affected. Several rates of mass loss have been<br/>proposed for use in stellar evolution codes, yielding

Stellar mass loss has a high impact on the overall evolution of a star. The amount<br/>of mass lost during a star’s lifetime dictates which remnant will be left behind and how<br/>the circumstellar environment will be affected. Several rates of mass loss have been<br/>proposed for use in stellar evolution codes, yielding discrepant results from codes using<br/>different rates. In this paper, I compare the effect of varying the mass loss rate in the<br/>stellar evolution code TYCHO on the initial-final mass relation. I computed four sets of<br/>models with varying mass loss rates and metallicities. Due to a large number of models<br/>reaching the luminous blue variable stage, only the two lower metallicity groups were<br/>considered. Their mass loss was analyzed using Python. Luminosity, temperature, and<br/>radius were also compared. The initial-final mass relation plots showed that in the 1/10<br/>solar metallicity case, reducing the mass loss rate tended to increase the dependence of final mass on initial mass. The limited nature of these results implies a need for further study into the effects of using different mass loss rates in the code TYCHO.

ContributorsAuchterlonie, Lauren (Author) / Young, Patrick (Thesis director) / Shkolnik, Evgenya (Committee member) / Starrfield, Sumner (Committee member) / School of Earth and Space Exploration (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05