Matching Items (4)
Filtering by

Clear all filters

134761-Thumbnail Image.png
Description
The LOw Frequency ARray (LOFAR) is a new and innovative radio telescope designed and constructed by the Netherlands Institute for Radio Astronomy (ASTRON). LOFAR unique capable of operating in very low frequencies (10-240 MHz) and consists of an extensive interferometry array of dipole antenna stations distributed throughout the Netherlands and

The LOw Frequency ARray (LOFAR) is a new and innovative radio telescope designed and constructed by the Netherlands Institute for Radio Astronomy (ASTRON). LOFAR unique capable of operating in very low frequencies (10-240 MHz) and consists of an extensive interferometry array of dipole antenna stations distributed throughout the Netherlands and Europe which allows it to achieve superb angular resolution. I investigate a part of the northern sky to search for rare radio objects such as radio haloes and radio relics that may have not been able to have been resolved by other radio telescopes.
ContributorsNguyen, Dustin Dinh (Author) / Scannapieco, Evan (Thesis director) / Butler, Nathaniel (Committee member) / School of Earth and Space Exploration (Contributor) / Department of Physics (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
134589-Thumbnail Image.png
Description
Radio astronomy is a subfield in astronomy that deals with objects emitting frequencies around 10 MHz to 100 GHz. The Low Frequency Array (LOFAR) is a array of radio antennas in Europe that can reach very low frequencies, roughly between 10-240 MHz. Our project was to image and clean a

Radio astronomy is a subfield in astronomy that deals with objects emitting frequencies around 10 MHz to 100 GHz. The Low Frequency Array (LOFAR) is a array of radio antennas in Europe that can reach very low frequencies, roughly between 10-240 MHz. Our project was to image and clean a field from LOFAR. The data was a 10 degree square in the sky centered at a right ascension of 10:19:34.608 and a declination +49.36.52.482. It was observed for 600 seconds at 141 MHz. To clean the field, we had to flag and remove any stations that were not responding. Using a program called FACTOR, we cleaned the image and reduced the residuals. Next we checked the validity of our sources. We checked positional offsets for our sources using the TGSS survey at 150 MHz, and corrected the declination of our LOFAR sources by a factor of 0.0002 degrees. We also fixed the LOFAR fluxes by a factor of 1.15. After this systematic check, we calculated the spectral index of our sources using the FIRST survey at 1435 MHz. We plotted this spectral index against LOFAR flux as well as redshift of the sources, and compared these to literature.
ContributorsStawinski, Stephanie Mae (Author) / Scannapieco, Evan (Thesis director) / Windhorst, Rogier (Committee member) / Karen, Olsen (Committee member) / Department of Physics (Contributor) / School of International Letters and Cultures (Contributor) / School of Earth and Space Exploration (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
134898-Thumbnail Image.png
Description
The goal of this thesis is to extend the astrophysical jet model created by Dr.
Gardner and Dr. Jones to model the surface brightness of astrophysical jets. We attempt to accomplish this goal by modeling the astrophysical jet HH30 in the spectral emission lines [SII] 6716Å, [OI] 6300Å, and [NII] 6583Å.

The goal of this thesis is to extend the astrophysical jet model created by Dr.
Gardner and Dr. Jones to model the surface brightness of astrophysical jets. We attempt to accomplish this goal by modeling the astrophysical jet HH30 in the spectral emission lines [SII] 6716Å, [OI] 6300Å, and [NII] 6583Å. In order to do so, we used the jet model to simulate the temperature and density of the jet to match observational data by Hartigan and Morse (2007). From these results, we derived the emissivities in these emission lines using Cloudy by Ferland et al. (2013). Then we used the emissivities to determine the surface brightness of the jet in these lines. We found that the simulated surface brightness agreed with the observational surface brightness and we conclude that the model could successfully be extended to model the surface brightness of a jet.
ContributorsVargas, Perry Bialek (Author) / Gardner, Carl (Thesis director) / Scannapieco, Evan (Committee member) / School of Mathematical and Statistical Sciences (Contributor) / School of Earth and Space Exploration (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
148230-Thumbnail Image.png
Description

Stellar mass loss has a high impact on the overall evolution of a star. The amount<br/>of mass lost during a star’s lifetime dictates which remnant will be left behind and how<br/>the circumstellar environment will be affected. Several rates of mass loss have been<br/>proposed for use in stellar evolution codes, yielding

Stellar mass loss has a high impact on the overall evolution of a star. The amount<br/>of mass lost during a star’s lifetime dictates which remnant will be left behind and how<br/>the circumstellar environment will be affected. Several rates of mass loss have been<br/>proposed for use in stellar evolution codes, yielding discrepant results from codes using<br/>different rates. In this paper, I compare the effect of varying the mass loss rate in the<br/>stellar evolution code TYCHO on the initial-final mass relation. I computed four sets of<br/>models with varying mass loss rates and metallicities. Due to a large number of models<br/>reaching the luminous blue variable stage, only the two lower metallicity groups were<br/>considered. Their mass loss was analyzed using Python. Luminosity, temperature, and<br/>radius were also compared. The initial-final mass relation plots showed that in the 1/10<br/>solar metallicity case, reducing the mass loss rate tended to increase the dependence of final mass on initial mass. The limited nature of these results implies a need for further study into the effects of using different mass loss rates in the code TYCHO.

ContributorsAuchterlonie, Lauren (Author) / Young, Patrick (Thesis director) / Shkolnik, Evgenya (Committee member) / Starrfield, Sumner (Committee member) / School of Earth and Space Exploration (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05