Matching Items (6)
Filtering by

Clear all filters

132902-Thumbnail Image.png
Description
Characterization of particulate process and product design is a difficult field because of the unique bulk properties and behaviors of particles that differ from gasses and liquids. The purpose of this research is to develop an equation to relate the angle of repose and flowability, the ability of the particle

Characterization of particulate process and product design is a difficult field because of the unique bulk properties and behaviors of particles that differ from gasses and liquids. The purpose of this research is to develop an equation to relate the angle of repose and flowability, the ability of the particle to flow as it pertains to particulate processes and product design. This research is important in multiple industries such as pharmaceuticals and food processes.
ContributorsNugent, Emily Rose (Author) / Emady, Heather (Thesis director) / Marvi, Hamidreza (Committee member) / Materials Science and Engineering Program (Contributor) / Dean, W.P. Carey School of Business (Contributor) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
133124-Thumbnail Image.png
Description
This thesis investigates the effects of differing diameters, removal of antistatic forces, and varying moisture content on the shear stress properties of granular glass beads through use of a Freeman FT4 Powder Rheometer. A yield locus results from plotting the experimental shear stress values (kPa) vs. the applied normal stress

This thesis investigates the effects of differing diameters, removal of antistatic forces, and varying moisture content on the shear stress properties of granular glass beads through use of a Freeman FT4 Powder Rheometer. A yield locus results from plotting the experimental shear stress values (kPa) vs. the applied normal stress value (kPa). From these yield loci, Mohr’s Circles are constructed to quantitatively describe flowability of tested materials in terms of a flow function parameter.

By testing 120-180 µm, 120-350 µm, 250-350 µm, and 430-600 µm dry glass bead ranges, an increase in diameter size is seen to result in both higher shear stress values and an increasing slope of plotted shear stress vs. applied normal stress. From constructed Mohr’s Circles, it is observed that flow function is quite high amongst tested dry materials, all yielding values above 20. A high flow function value (>10) is indicative of a good flow.1 Flow function was observed to increase with increasing diameter size until a slight drop was observed at the 430-600 µm range, possibly due to material quality or being near the size limitation of testing within the FT4, where materials must be less than 1000 µm in diameter.However, no trend could be observed in flowability as diameter size was increased.

Through the use of an antistatic solution, the effect of electrostatic forces generated by colliding particles was tested. No significant effect on the shear stress properties was observed.

Wet material testing occurred with the 120-180 µm glass bead range using a deionized water content of 0%, 1%, 5%, 15%, and 20% by mass. The results of such testing yielded an increase in shear stress values at applied normal stress values as moisture content is increased, as well as a decrease in the resulting flow function parameter. However, this trend changed as 20% moisture content was achieved; the wet material became a consistent paste, and a large drop in shear stress values occurred along with an increase in flowability.
ContributorsKleppe, Cameron Nicholas (Author) / Emady, Heather (Thesis director) / Vajrala, Spandana (Committee member) / Chemical Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2018-12
155117-Thumbnail Image.png
Description
Ionic liquids (ILs), or low-temperature liquid salts, are a class of materials with unique and useful properties. Made up entirely of ions, ILs are remarkably tunable and diverse as cations and anions can be mixed and matched to yield desired properties. Because of this, IL/water systems range widely—from homogeneous mixtures

Ionic liquids (ILs), or low-temperature liquid salts, are a class of materials with unique and useful properties. Made up entirely of ions, ILs are remarkably tunable and diverse as cations and anions can be mixed and matched to yield desired properties. Because of this, IL/water systems range widely—from homogeneous mixtures to multiphasic systems featuring ionic liquid/liquid interfaces. Even more diversity is added when particles are introduced to these systems, as hard particles or soft-matter microgels interact with both ILs and water in complex ways. This work examines both miscible ionic liquid/water mixture and two-phase, immiscible ionic liquid/water systems. Extensive molecular dynamics (MD) simulations are utilized in conjunction with physical measurements to inform theoretical understanding of the nature of these systems, and this theoretical understanding is related to practical applications—in particular, the development of a low-temperature liquid electrolyte for use in molecular electronic transducer (MET) seismometers, and particle self-assembly and transport at ionic liquid/liquid interfaces such as those in Pickering emulsions.

The homogenous mixture of 1-butyl-3-methylimidazolium iodide and water is examined extensively through MD as well as physical characterization of properties. Molecular ordering within the liquid mixture is related to macroscopic properties. These mixtures are then used as the basis of an electrolyte with unusual characteristics, specifically a wide liquid temperature range with an extremely low lower bound combined with relatively low viscosity allowing excellent performance in the MET sensor. Electrolyte performance is further improved by the addition of fullerene nanoparticles, which dramatically increase device sensitivity. The reasons behind this effect are explored by testing the effect of graphene surface size and through MD simulations of fullerene and a silica nanoparticle (for contrast) in [BMIM][I]/water mixtures.

Immiscible ionic liquid/water systems are explored through MD studies of particles at IL/water interfaces. By increasing the concentration of hydrophobic nanoparticles at the IL/water interface, one study discovers the formation of a commingled IL/water/particle pseudo-phase, and relates this discovery to previously-observed unique behaviors of these interfaces, particularly spontaneous particle transport across the interface. The other study demonstrates that IL hydrophobicity can influence the deformation of thermo-responsive soft particles at the liquid/liquid interface.
ContributorsNickerson, Stella Day (Author) / Dai, Lenore L (Thesis advisor) / Yu, Hongyu (Committee member) / Lind, Mary Laura (Committee member) / Mu, Bin (Committee member) / Emady, Heather (Committee member) / Arizona State University (Publisher)
Created2016
Description

Rotary drums are used to manufacture pharmaceuticals, cement, food, and other particulate products because of their high heat and mass transfer rates. These processes are governed by particle parameters, such as particle size, particle distribution, and shape, and operating parameters, such as rotation rate and fill level. Enormous energy savings

Rotary drums are used to manufacture pharmaceuticals, cement, food, and other particulate products because of their high heat and mass transfer rates. These processes are governed by particle parameters, such as particle size, particle distribution, and shape, and operating parameters, such as rotation rate and fill level. Enormous energy savings are possible with further research in rotary drums due to potential increases in operating efficiency. This study investigates the drum rotation rate on particle bed temperature at temperatures above 500 °C to see the role that radiation heat transfer plays in this process. 2 mm silica beads and a stainless steel rotary drum were used at a fill level of 25% with rotation rates from 2-10 rpm. A new setup and procedure were developed using heating coils and an IR camera to reach high temperatures. The inner drum wall temperature exceeded the outer drum wall temperature because the steel transmitted more heat into the drum at higher temperatures. Although it was unclear whether the heat transfer rate was affected by the increasing rotation rate, the highest final average particle temperature was obtained at 5 rpm. The particle bed temperature distribution narrowed as the rotation rate increased because, at higher rotation rates, more particles are in contact with the drum wall than at lower rotation rates.

ContributorsTronstad, Joel (Author) / Emady, Heather (Thesis director) / Holloway, Julianne (Committee member) / Barrett, The Honors College (Contributor) / Chemical Engineering Program (Contributor) / Dean, W.P. Carey School of Business (Contributor)
Created2023-05
158537-Thumbnail Image.png
Description
The current research is based on the principles of three-dimensional discrete element method (3D – DEM) through simulations, by using heat transfer models in EDEM, to investigate the effects of fill level, rotation rate and particle size on the steady-state conduction heat transfer in rotary drums. The high heat and

The current research is based on the principles of three-dimensional discrete element method (3D – DEM) through simulations, by using heat transfer models in EDEM, to investigate the effects of fill level, rotation rate and particle size on the steady-state conduction heat transfer in rotary drums. The high heat and mass transfer rates obtained through rotary drums make them very useful for powder mixing and heating processes in metallurgical, cement, mining, pharmaceutical, detergent and other particulate processing applications. However, these complex processes are difficult to model and operate since the particles can have a wide range of properties, and there is currently no way to predict the optimal operating conditions for a given material.

Steady-state heat transfer by conduction forms the basis for understanding other steady-state and unsteady-state heat transfer in a rotary drum – conduction, convection and radiation. Statistical analysis is carried out to determine the effects of these process parameters and find optimal operating conditions, which will thereby improve the heat transfer efficiency in rotary drums. A stainless-steel drum with a diameter of 6 inches and a length of 3 inches was modeled in EDEM with silica beads of sizes 2 mm, 3 mm and 4 mm at fill levels of 10%, 17.5% and 25%, and at rotation rates of 2 rpm, 5 rpm and 10 rpm. It was found that the heating uniformity increased with decreasing particle size, decreasing fill level and increasing rotation rate. This research is the first step towards studying the other heat transfer modes and various other process parameters. Better understanding of the various heat transfer modes, when used in combination for heating the particles, will be beneficial in improving the operating efficiency, reducing material costs and leading to significant energy conservation on a global scale.
ContributorsBheda, Bhaumik (Author) / Emady, Heather (Thesis advisor) / Muhich, Christopher (Committee member) / Nielsen, David (Committee member) / Arizona State University (Publisher)
Created2020
161871-Thumbnail Image.png
Description
Functional materials can be characterized as materials that have tunable properties and are attractive solutions to the improvement and optimization of processes that require specific physiochemical characteristics. Through tailoring and altering these materials, their characteristics can be fine-tuned for specific applications. Computational modeling proves to be a crucial methodology in

Functional materials can be characterized as materials that have tunable properties and are attractive solutions to the improvement and optimization of processes that require specific physiochemical characteristics. Through tailoring and altering these materials, their characteristics can be fine-tuned for specific applications. Computational modeling proves to be a crucial methodology in the design and optimization of such materials. This dissertation encompasses the utilization of molecular dynamics simulations and quantum calculations in two fields of functional materials: electrolytes and semiconductors. Molecular dynamics (MD) simulations were performed on ionic liquid-based electrolyte systems to identify molecular interactions, structural changes, and transport properties that are often reflected in experimental results. The simulations aid in the development process of the electrolyte systems in terms of concentrations of the constituents and can be invoked as a complementary or predictive tool to laboratory experiments. The theme of this study stretches further to include computational studies of the reactivity of atomic layer deposition (ALD) precursors. Selected aminosilane-based precursors were chosen to undergo density functional theory (DFT) calculations to determine surface reactivity and viability in an industrial setting. The calculations were expanded to include the testing of a semi-empirical tight binding program to predict growth per cycle and precursor reactivity with a high surface coverage model. Overall, the implementation of computational methodologies and techniques within these applications improves materials design and process efficiency while streamlining the development of new functional materials.
ContributorsGliege, Marisa Elise (Author) / Dai, Lenore (Thesis advisor) / Derecskei-Kovacs, Agnes (Thesis advisor) / Muhich, Christopher (Committee member) / Emady, Heather (Committee member) / Zhuang, Houlong (Committee member) / Arizona State University (Publisher)
Created2021