Matching Items (7)
Filtering by

Clear all filters

133496-Thumbnail Image.png
DescriptionThe goal of this creative thesis is to construct and implement an outdoor learning environment for the students who currently attend AIM's homework club. The project is underway and will be undergoing construction over the next few months.
ContributorsPeralta, Crystal Diane (Author) / Coseo, Paul (Thesis director) / Cook, Edward (Committee member) / The Design School (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
133233-Thumbnail Image.png
Description
The suburbs provoke a deeply polarized reaction, more so than most other components of the urban landscape. Those who live in the suburbs often love them for their quietude and their spaciousness, even while urban designers lament suburban sprawl. Regardless, suburbs are deeply entrenched in patterns of American urban land

The suburbs provoke a deeply polarized reaction, more so than most other components of the urban landscape. Those who live in the suburbs often love them for their quietude and their spaciousness, even while urban designers lament suburban sprawl. Regardless, suburbs are deeply entrenched in patterns of American urban land use, so an evolution to more sustainable land use will require incremental changes to suburban landscapes. The purpose of this project is twofold: one, to design a transition to a more sustainable landscape for an HOA in Gilbert, Arizona; and two, to abstract the process of designing this transition so that it can be applied on a larger scale.
ContributorsRonczy, Patricia Sophia (Author) / Coseo, Paul (Thesis director) / Hargrove, Allyce (Committee member) / The Design School (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
154644-Thumbnail Image.png
Description
During summer 2014, a study was conducted as part of the Landscape Architecture Foundation Case Study Investigation to analyze features of three sustainably designed landscapes. Each project was located in a southwest desert city: Civic Space Park in Phoenix, AZ, the Pete V. Domenici US Courthouse Sustainable Landscape Retrofit in

During summer 2014, a study was conducted as part of the Landscape Architecture Foundation Case Study Investigation to analyze features of three sustainably designed landscapes. Each project was located in a southwest desert city: Civic Space Park in Phoenix, AZ, the Pete V. Domenici US Courthouse Sustainable Landscape Retrofit in Albuquerque, NM, and George "Doc" Cavalliere Park in Scottsdale, AZ. The principal components of each case study were performance benefits that quantified ongoing ecosystem services. Performance benefits were developed from data provided by the designers and collected by the research team. The functionality of environmental, social, and economic sustainable features was evaluated. In southwest desert cities achieving performance benefits such as microclimate cooling often come at the cost of water conservation. In each of these projects such tradeoffs were balanced by prioritizing the project goals and constraints.

During summer 2015, a study was conducted to characterize effects of tree species and shade structures on outdoor human thermal comfort under hot, arid conditions. Motivating the research was the hypothesis that tree species and shade structures will vary in their capacity to improve thermal comfort due to their respective abilities to attenuate solar radiation. Micrometeorological data was collected in full sun and under shade of six landscape tree species and park ramadas in Phoenix, AZ during pre-monsoon summer afternoons. The six landscape tree species included: Arizona ash (Fraxinus velutina Torr.), Mexican palo verde (Parkinsonia aculeata L.), Aleppo pine (Pinus halepensis Mill.), South American mesquite (Prosopis spp. L.), Texas live oak (Quercus virginiana for. fusiformis Mill.), and Chinese elm (Ulmus parvifolia Jacq.). Results showed that the tree species and ramadas were not similarly effective at improving thermal comfort, represented by physiologically equivalent temperature (PET). The difference between PET in full sun and under shade was greater under Fraxinus and Quercus than under Parkinsonia, Prosopis, and ramadas by 2.9-4.3 °C. Radiation was a significant driver of PET (p<0.0001, R2=0.69) and with the exception of ramadas, lower radiation corresponded with lower PET. Variations observed in this study suggest selecting trees or structures that attenuate the most solar radiation is a potential strategy for optimizing PET.
ContributorsColter, Kaylee (Author) / Martin, Chris (Thesis advisor) / Coseo, Paul (Committee member) / Middel, Ariane (Committee member) / Arizona State University (Publisher)
Created2016
Description

There are unfortunately very few curricular guides that focus on community engagement within the higher education of landscape architecture. A Beginner’s Guide to Community Engagement in the Curriculum of Landscape Architecture and Urban Planning to Improve Social Justice and Sustainability helps resolve this issue and serves as a resource to

There are unfortunately very few curricular guides that focus on community engagement within the higher education of landscape architecture. A Beginner’s Guide to Community Engagement in the Curriculum of Landscape Architecture and Urban Planning to Improve Social Justice and Sustainability helps resolve this issue and serves as a resource to students, educators, designers, and more. The guide centralizes a diverse collection of resources, guides students through learning materials, shares insight, and proposes potential community engagement methods. The booklet aims to help readers understand the importance of community engagement in design and shares different curricular approaches to introduce the work to students.

ContributorsNeeson, Margaret (Author) / Cheng, Chingwen (Thesis director) / Coseo, Paul (Committee member) / Barrett, The Honors College (Contributor) / School of Sustainability (Contributor) / School of Geographical Sciences and Urban Planning (Contributor) / The Design School (Contributor)
Created2023-05
158350-Thumbnail Image.png
Description
The rapid rate of urbanization coupled with continued population growth and anthropogenic activities has resulted in a myriad of urban climate related impacts across different cities around the world. Hot-arid cities are more vulnerable to induced urban heat effects due to the intense solar radiation during most of the year,

The rapid rate of urbanization coupled with continued population growth and anthropogenic activities has resulted in a myriad of urban climate related impacts across different cities around the world. Hot-arid cities are more vulnerable to induced urban heat effects due to the intense solar radiation during most of the year, leading to increased ambient air temperature and outdoor/indoor discomfort in Phoenix, Arizona. With the fast growth of the capital city of Arizona, the automobile-dependent planning of the city contributed negatively to the outdoor thermal comfort and to the people's daily social lives. One of the biggest challenges for hot-arid cities is to mitigate against the induced urban heat increase and improve the outdoor thermal. The objective of this study is to propose a pragmatic and useful framework that would improve the outdoor thermal comfort, by being able to evaluate and select minimally invasive urban heat mitigation strategies that could be applied to the existing urban settings in the hot-arid area of Phoenix. The study started with an evaluation of existing microclimate conditions by means of multiple field observations cross a North-South oriented urban block of buildings within Arizona State University’s Downtown campus in Phoenix. The collected data was evaluated and analyzed for a better understanding of the different local climates within the study area, then used to evaluate and partially validate a computational fluid dynamics model, ENVI-Met. Furthermore, three mitigation strategies were analyzed to the Urban Canopy Layer (UCL) level, an increase in the fraction of permeable materials in the ground surface, adding different configurations of high/low Leaf Area Density (LAD) trees, and replacing the trees configurations with fabric shading. All the strategies were compared and analyzed to determine the most impactful and effective mitigation strategies. The evaluated strategies have shown a substantial cooling effect from the High LAD trees scenarios. Also, the fabric shading strategies have shown a higher cooling effect than the Low LAD trees. Integrating the trees scenarios with the fabric shading had close cooling effect results in the High LAD trees scenarios. Finally, how to integrate these successful strategies into practical situations was addressed.
ContributorsAldakheelallah, Abdullah (Author) / Reddy, T Agami (Thesis advisor) / Middel, Ariane (Committee member) / Coseo, Paul (Committee member) / Arizona State University (Publisher)
Created2020
Description
This thesis will discuss how design strategies reduce the impact track venues
have on the environment and how to enhance the sense of place by investigating
ecoregional design for now and for the future. The specific site where examples of
sustainable design will be implemented is at the proposed new Arizona State University
Track

This thesis will discuss how design strategies reduce the impact track venues
have on the environment and how to enhance the sense of place by investigating
ecoregional design for now and for the future. The specific site where examples of
sustainable design will be implemented is at the proposed new Arizona State University
Track and field that will be relocated as part of the Novus Innovation Corridor Athletic
Village. First, we will discuss the impact sports have on our health and culture and why
athletics matters to society. Understanding the history of track and field and the
evolution of track stadiums and looking at current designs of stadiums will provide
insight for future track designs. Next, we will look at some existing track stadiums
around the United States and how each design is adjusted to the climate and weather of
the region to help the stadium last longer and be more sustainable. After that, we will
look at what is working for the existing Sun Angel Stadium and what should be improved
and implemented in the new design. Lastly, we will explore a proposed design for the
new Sun Angel Track Stadium and how it will benefit the student athletes, spectators,
and the environment.
ContributorsAntill, Kaylee Noelani (Author) / Coseo, Paul (Thesis director) / Martens, Lora (Committee member) / The Design School (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
132506-Thumbnail Image.png
Description
This project focuses on providing a series of Sensory Design Guidelines (SDG) for the creation of restorative environments for people and nature promoting cognitive health, motor skill development, and outdoor therapy for urban society’s most vulnerable. Although the project framework is structured around guidelines for the creation of spaces specifically

This project focuses on providing a series of Sensory Design Guidelines (SDG) for the creation of restorative environments for people and nature promoting cognitive health, motor skill development, and outdoor therapy for urban society’s most vulnerable. Although the project framework is structured around guidelines for the creation of spaces specifically designed for children with Sensory Processing Disorder, it is not restricted to that specific application. Guidelines are further developed structured around inclusive and universal design approaches.

The project is divided into four sections. The first section explores what Sensory Processing Disorder is, how Occupational Therapy with Sensory Integration positively impacts healing processes, and how designers can expand this processing into the natural healing environment of the great outdoors in a toxic and urbanized world. The second section discusses the vision, goals and objectives for implementation of Sensory Design Guidelines as discussed in the third section. And finally, the fourth section provides a conceptual example of what SDG would look like when applied to a physical site along a natural corridor in a densely urbanized landscape.

The final example of SDG implementation is applied to a site along the Salt River (Rio Salado) Corridor in Phoenix, Arizona. The Corridor is the subject of a coordinated inter-agency public/private restoration initiative spanning more than fifty-five miles along the Salt River that has been strongly supported by former U.S. Senator John McCain and greatly influenced by active involvement from Arizona State University students. The designated example site is designed as one site to be utilized in a larger network of easily accessible Sensory sites, each to be designed with a different approach to sensory development, as well as variation in challenges based on age and sensory abilities. Guidelines are intended to work in conjunction with future local projects promoting social and ecological growth and wellbeing, such as the Phoenix site is intended to work in conjunction with future Rio Re-imagined projects.

The findings, guidelines, and examples provided throughout the paper are focused on re-inventing the relationship between the built and natural environments in the urbanized landscape into one of daily nature-engagement and can be applied to any group living within an urban setting. By designing for society’s most vulnerable populations, design application benefits not only the individual, but creates a resilient, healthy environment for the entire urban population today, and for future generations.
ContributorsSquyres, Katryn O (Author) / Coseo, Paul (Thesis director) / Hargrove, Allyce (Committee member) / The Design School (Contributor) / Department of Finance (Contributor) / Dean, W.P. Carey School of Business (Contributor) / Department of Information Systems (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05