Matching Items (2)
Filtering by

Clear all filters

154644-Thumbnail Image.png
Description
During summer 2014, a study was conducted as part of the Landscape Architecture Foundation Case Study Investigation to analyze features of three sustainably designed landscapes. Each project was located in a southwest desert city: Civic Space Park in Phoenix, AZ, the Pete V. Domenici US Courthouse Sustainable Landscape Retrofit in

During summer 2014, a study was conducted as part of the Landscape Architecture Foundation Case Study Investigation to analyze features of three sustainably designed landscapes. Each project was located in a southwest desert city: Civic Space Park in Phoenix, AZ, the Pete V. Domenici US Courthouse Sustainable Landscape Retrofit in Albuquerque, NM, and George "Doc" Cavalliere Park in Scottsdale, AZ. The principal components of each case study were performance benefits that quantified ongoing ecosystem services. Performance benefits were developed from data provided by the designers and collected by the research team. The functionality of environmental, social, and economic sustainable features was evaluated. In southwest desert cities achieving performance benefits such as microclimate cooling often come at the cost of water conservation. In each of these projects such tradeoffs were balanced by prioritizing the project goals and constraints.

During summer 2015, a study was conducted to characterize effects of tree species and shade structures on outdoor human thermal comfort under hot, arid conditions. Motivating the research was the hypothesis that tree species and shade structures will vary in their capacity to improve thermal comfort due to their respective abilities to attenuate solar radiation. Micrometeorological data was collected in full sun and under shade of six landscape tree species and park ramadas in Phoenix, AZ during pre-monsoon summer afternoons. The six landscape tree species included: Arizona ash (Fraxinus velutina Torr.), Mexican palo verde (Parkinsonia aculeata L.), Aleppo pine (Pinus halepensis Mill.), South American mesquite (Prosopis spp. L.), Texas live oak (Quercus virginiana for. fusiformis Mill.), and Chinese elm (Ulmus parvifolia Jacq.). Results showed that the tree species and ramadas were not similarly effective at improving thermal comfort, represented by physiologically equivalent temperature (PET). The difference between PET in full sun and under shade was greater under Fraxinus and Quercus than under Parkinsonia, Prosopis, and ramadas by 2.9-4.3 °C. Radiation was a significant driver of PET (p<0.0001, R2=0.69) and with the exception of ramadas, lower radiation corresponded with lower PET. Variations observed in this study suggest selecting trees or structures that attenuate the most solar radiation is a potential strategy for optimizing PET.
ContributorsColter, Kaylee (Author) / Martin, Chris (Thesis advisor) / Coseo, Paul (Committee member) / Middel, Ariane (Committee member) / Arizona State University (Publisher)
Created2016
Description
This thesis will discuss how design strategies reduce the impact track venues
have on the environment and how to enhance the sense of place by investigating
ecoregional design for now and for the future. The specific site where examples of
sustainable design will be implemented is at the proposed new Arizona State University
Track

This thesis will discuss how design strategies reduce the impact track venues
have on the environment and how to enhance the sense of place by investigating
ecoregional design for now and for the future. The specific site where examples of
sustainable design will be implemented is at the proposed new Arizona State University
Track and field that will be relocated as part of the Novus Innovation Corridor Athletic
Village. First, we will discuss the impact sports have on our health and culture and why
athletics matters to society. Understanding the history of track and field and the
evolution of track stadiums and looking at current designs of stadiums will provide
insight for future track designs. Next, we will look at some existing track stadiums
around the United States and how each design is adjusted to the climate and weather of
the region to help the stadium last longer and be more sustainable. After that, we will
look at what is working for the existing Sun Angel Stadium and what should be improved
and implemented in the new design. Lastly, we will explore a proposed design for the
new Sun Angel Track Stadium and how it will benefit the student athletes, spectators,
and the environment.
ContributorsAntill, Kaylee Noelani (Author) / Coseo, Paul (Thesis director) / Martens, Lora (Committee member) / The Design School (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05