Matching Items (8)

131626-Thumbnail Image.png

Development of low-temperature ionic liquid-organic solvents-salt electrolyte systems for MET seismometer

Description

Ionic liquids boast a wide variety of application as modern electrolytes. Their unique collection of attributes, most notably insignificant vapor pressures, considerable ionic conductivity, and excellent thermal stability, prove ionic

Ionic liquids boast a wide variety of application as modern electrolytes. Their unique collection of attributes, most notably insignificant vapor pressures, considerable ionic conductivity, and excellent thermal stability, prove ionic liquids excellent candidates for low-temperature electrolyte applications. This project focuses on the development of a low-temperature iodide-based ionic liquid electrolyte for a molecular electronic transducer (MET) seismometer. Based on ionic liquid 1-butyl-3-methylimidazolium iodide ([BMIM][I]), a functional electrolyte system is developed and optimized with addition of organic solvents, gamma-butyrolactone (GBL) and propylene carbonate (PC), and lithium iodide, showing the promise of operating at excessively low temperatures. The molecular interactions between [BMIM][I] and the organic solvents were classified using FTIR and 1H NMR spectroscopy. Specifically, the presence of hydrogen bonding between the carbonyl group on the organic solvents and the [BMIM]+ cation were captured. The effect of these interactions on several electrolyte properties were observed, including an extended glass transition temperature (Tg) of -120.2 °C and enhanced transport properties. When compared to the previous formulations, the optimized electrolyte exhibits a broader working temperature range, a higher fluidity over the temperature range from 25°C to -75 °C, and an enhanced ionic conductivity at temperatures below -70 °C as suggested by the Vogel–Fulcher–Tammann (VFT) model. Cyclic voltammetry (CV) confirmed the electrochemical stability of the electrolyte as well as the activity of the I3- / I- redox reaction for the MET sensing technology at room temperature. The presented works not only present a facile strategy of designing low-temperature electrolyte systems via design of molecular interactions, but also support future operations of MET seismometer.

Contributors

Agent

Created

Date Created
  • 2020-05

158067-Thumbnail Image.png

Multifunctional Soft Materials: Design, Development and Applications

Description

Soft materials are matters that can easily deform from their original shapes and structures under thermal or mechanical stresses, and they range across various groups of materials including liquids, foams,

Soft materials are matters that can easily deform from their original shapes and structures under thermal or mechanical stresses, and they range across various groups of materials including liquids, foams, gels, colloids, polymers, and biological substances. Although soft materials already have numerous applications with each of their unique characteristics, integrating materials to achieve complementary functionalities is still a growing need for designing advanced applications of complex requirements. This dissertation explores a unique approach of utilizing intermolecular interactions to accomplish not only the multifunctionality from combined materials but also their tailored properties designed for specific tasks. In this work, multifunctional soft materials are explored in two particular directions, ionic liquids (ILs)-based mixtures and interpenetrating polymer network (IPN).

First, ILs-based mixtures were studied to develop liquid electrolytes for molecular electronic transducers (MET) in planetary exploration. For space missions, it is challenging to operate any liquid electrolytes in an extremely low-temperature environment. By tuning intermolecular interactions, the results demonstrated a facile method that has successfully overcome the thermal and transport barriers of ILs-based mixtures at extremely low temperatures. Incorporation of both aqueous and organic solvents in ILs-based electrolyte systems with varying types of intermolecular interactions are investigated, respectively, to yield optimized material properties supporting not only MET sensors but also other electrochemical devices with iodide/triiodide redox couple targeting low temperatures.

Second, an environmentally responsive hydrogel was synthesized via interpenetrating two crosslinked polymer networks. The intermolecular interactions facilitated by such an IPN structure enables not only an upper critical solution temperature (UCST) transition but also a mechanical enhancement of the hydrogel. The incorporation of functional units validates a positive swelling response to visible light and also further improves the mechanical properties. This studied IPN system can serve as a promising route in developing “smart” hydrogels utilizing visible light as a simple, inexpensive, and remotely controllable stimulus.

Over two directions across from ILs to polymeric networks, this work demonstrates an effective strategy of utilizing intermolecular interactions to not only develop multifunctional soft materials for advanced applications but also discover new properties beyond their original boundaries.

Contributors

Agent

Created

Date Created
  • 2020

151979-Thumbnail Image.png

Self-assembly at ionic liquid-based interfaces: fundamentals and applications

Description

Liquid-liquid interfaces serve as ideal 2-D templates on which solid particles can self-assemble into various structures. These self-assembly processes are important in fabrication of micron-sized devices and emulsion formulation. At

Liquid-liquid interfaces serve as ideal 2-D templates on which solid particles can self-assemble into various structures. These self-assembly processes are important in fabrication of micron-sized devices and emulsion formulation. At oil/water interfaces, these structures can range from close-packed aggregates to ordered lattices. By incorporating an ionic liquid (IL) at the interface, new self-assembly phenomena emerge. ILs are ionic compounds that are liquid at room temperature (essentially molten salts at ambient conditions) that have remarkable properties such as negligible volatility and high chemical stability and can be optimized for nearly any application. The nature of IL-fluid interfaces has not yet been studied in depth. Consequently, the corresponding self-assembly phenomena have not yet been explored. We demonstrate how the unique molecular nature of ILs allows for new self-assembly phenomena to take place at their interfaces. These phenomena include droplet bridging (the self-assembly of both particles and emulsion droplets), spontaneous particle transport through the liquid-liquid interface, and various gelation behaviors. In droplet bridging, self-assembled monolayers of particles effectively "glue" emulsion droplets to one another, allowing the droplets to self-assembly into large networks. With particle transport, it is experimentally demonstrated the ILs overcome the strong adhesive nature of the liquid-liquid interface and extract solid particles from the bulk phase without the aid of external forces. These phenomena are quantified and corresponding mechanisms are proposed. The experimental investigations are supported by molecular dynamics (MD) simulations, which allow for a molecular view of the self-assembly process. In particular, we show that particle self-assembly depends primarily on the surface chemistry of the particles and the non-IL fluid at the interface. Free energy calculations show that the attractive forces between nanoparticles and the liquid-liquid interface are unusually long-ranged, due to capillary waves. Furthermore, IL cations can exhibit molecular ordering at the IL-oil interface, resulting in a slight residual charge at this interface. We also explore the transient IL-IL interface, revealing molecular interactions responsible for the unusually slow mixing dynamics between two ILs. This dissertation, therefore, contributes to both experimental and theoretical understanding of particle self-assembly at IL based interfaces.

Contributors

Agent

Created

Date Created
  • 2013

154600-Thumbnail Image.png

Magnesium battery electrolytes in ionic liquids

Description

A lack of adequate energy storage technologies is arguably the greatest hindrance to a modern sustainable energy infrastructure. Chemical energy storage, in the form of batteries, is an obvious solution

A lack of adequate energy storage technologies is arguably the greatest hindrance to a modern sustainable energy infrastructure. Chemical energy storage, in the form of batteries, is an obvious solution to the problem. Unfortunately, today’s state of the art battery technologies fail to meet the desired metrics for full scale electric grid and/or electric vehicle role out. Considerable effort from scientists and engineers has gone into the pursuit of battery chemistries theoretically capable of far outperforming leading technologies like Li-ion cells. For instance, an anode of the relatively abundant and cheap metal, magnesium, would boost the specific energy by over 4.6 times that of the current Li-ion anode (LiC6).

The work presented here explores the compatibility of magnesium electrolytes in TFSI–-based ionic liquids with a Mg anode (TFSI = bis(trifluoromethylsulfonyl)imide). Correlations are made between the Mg2+ speciation conditions in bulk solutions (as determined via Raman spectroscopy) and the corresponding electrochemical behavior of the electrolytes. It was found that by creating specific chelating conditions, with an appropriate Mg salt, the desired electrochemical behavior could be obtained, i.e. reversible electrodeposition and dissolution. Removal of TFSI– contact ion pairs from the Mg2+ solvation shell was found to be essential for reversible electrodeposition. Ionic liquids with polyethylene glycol chains pendent from a parent pyrrolidinium cation were synthesized and used to create the necessary complexes with Mg2+, from Mg(BH4)2, so that reversible electrodeposition from a purely ionic liquid medium was achieved.

The following document discusses findings from several electrochemical experiments on magnesium electrolytes in ionic liquids. Explanations for the failure of many of these systems to produce reversible Mg electrodeposition are provided. The key characteristics of ionic liquid systems that are capable of achieving reversible Mg electrodeposition are also given.

Contributors

Agent

Created

Date Created
  • 2016

150409-Thumbnail Image.png

Engineering the electrode-electrolyte interface: from electrode architecture to Zn redox in ionic liquid electrolytes

Description

The electrode-electrolyte interface in electrochemical environments involves the understanding of complex processes relevant for all electrochemical applications. Some of these processes include electronic structure, charge storage, charge transfer, solvent dynamics

The electrode-electrolyte interface in electrochemical environments involves the understanding of complex processes relevant for all electrochemical applications. Some of these processes include electronic structure, charge storage, charge transfer, solvent dynamics and structure and surface adsorption. In order to engineer electrochemical systems, no matter the function, requires fundamental intuition of all the processes at the interface. The following work presents different systems in which the electrode-electrolyte interface is highly important. The first is a charge storage electrode utilizing percolation theory to develop an electrode architecture producing high capacities. This is followed by Zn deposition in an ionic liquid in which the deposition morphology is highly dependant on the charge transfer and surface adsorption at the interface. Electrode Architecture: A three-dimensional manganese oxide supercapacitor electrode architecture is synthesized by leveraging percolation theory to develop a hierarchically designed tri-continuous percolated network. The three percolated phases include a faradaically-active material, electrically conductive material and pore-former templated void space. The micropores create pathways for ionic conductivity, while the nanoscale electrically conducting phase provides both bulk conductivity and local electron transfer with the electrochemically active phase. Zn Electrodeposition: Zn redox in air and water stable N-ethyl-N-methylmorpholinium bis(trifluoromethanesulfonyl)imide, [C2nmm][NTf2] is presented. Under various conditions, characterization of overpotential, kinetics and diffusion of Zn species and morphological evolution as a function of overpotential and Zn concentration are analyzed. The surface stress evolution during Zn deposition is examined where grain size and texturing play significant rolls in compressive stress generation. Morphological repeatability in the ILs led to a novel study of purity in ionic liquids where it is found that surface adsorption of residual amine and chloride from the organic synthesis affect growth characteristics. The drivers of this work are to understand the processes occurring at the electrode-electrolyte interface and with that knowledge, engineer systems yielding optimal performance. With this in mind, the design of a bulk supercapacitor electrode architecture with excellent composite specific capacitances, as well as develop conditions producing ideal Zn deposition morphologies was completed.

Contributors

Agent

Created

Date Created
  • 2011

156808-Thumbnail Image.png

Corrosion and passivation of Mg-Al and Ni-Cr alloys

Description

In this dissertation, micro-galvanic corrosion effects and passivation behavior of single-phase binary alloys have been studied in order to formulate new insights towards the development of “stainless-like” lightweight alloys. As

In this dissertation, micro-galvanic corrosion effects and passivation behavior of single-phase binary alloys have been studied in order to formulate new insights towards the development of “stainless-like” lightweight alloys. As a lightweight material of interest, Mg-xAl alloys were studied using aqueous free corrosion, atmospheric corrosion, dissolution rate kinetics, and ionic liquid dissolution. Polarization and “accelerated” free corrosion studies in aqueous chloride were used to characterize the corrosion behavior and morphology of alloys. Atmospheric corrosion experiments revealed surface roughness and pH evolution behavior in aqueous environment. Dissolution in absence of water using choline-chloride:urea ionic liquid allowed for a simpler dissolution mechanism to be observed, providing additional insights regarding surface mobility of Al. These results were compared with commercial alloy (AZ31B, AM60, and AZ91D) behavior to better elucidate effects associated with secondary phases and intermetallic particles often present in Mg alloys. Aqueous free corrosion, “accelerated” free corrosion and ionic liquid dissolution studies have confirmed Al surface enrichment in a variety of morphologies, including Al-rich platelet and Al nanowire formation. This behavior is attributed to the preferential dissolution of Al as the more “noble” element in the matrix. Inductively-coupled mass spectroscopy was used to measure first-order rate reaction constants for elemental Mg and Al dissolution in aqueous chloride environment to be kMg= 9.419 x 10-6 and kAl = 2.103 x 10-6 for future implementation in kinetic Monte Carlo simulations. To better understand how “stainless-like” passivation may be achieved, Ni-xCr alloys were studied using polarization and potential pulse experiments. The passivation potential, critical current density, and passivation current density were found to decay with increasing Cr composition. The measured average number of monolayers dissolved during passivation was found to be in good agreement with percolation theory, with a fitted 3-D percolation threshold of p_c^3D=0.118 compared with the theoretical value of 0.137. Using these results, possible approaches towards achieving passivation in other systems, including Mg-Al, are discussed.

Contributors

Agent

Created

Date Created
  • 2018

151946-Thumbnail Image.png

Novel anhydrous superprotonic ionic liquids and membranes for application in mid-temperature fuel cells

Description

This thesis studies three different types of anhydrous proton conducting electrolytes for use in fuel cells. The proton energy level scheme is used to make the first electrolyte which is

This thesis studies three different types of anhydrous proton conducting electrolytes for use in fuel cells. The proton energy level scheme is used to make the first electrolyte which is a rubbery polymer in which the conductivity reaches values typical of activated Nafion, even though it is completely anhydrous. The protons are introduced into a cross-linked polyphospazene rubber by the superacid HOTf, which is absorbed by partial protonation of the backbone nitrogens. The decoupling of conductivity from segmental relaxation times assessed by comparison with conductivity relaxation times amounts to some 10 orders of magnitude, but it cannot be concluded whether it is purely protonic or due equally to a mobile OTf- or H(OTf)2-; component. The second electrolyte is built on the success of phosphoric acid as a fuel cell electrolyte, by designing a variant of the molecular acid that has increased temperature range without sacrifice of high temperature conductivity or open circuit voltage. The success is achieved by introduction of a hybrid component, based on silicon coordination of phosphate groups, which prevents decomposition or water loss to 250ºC, while enhancing free proton motion. Conductivity studies are reported to 285ºC and full H2/O2 cell polarization curves to 226ºC. The current efficiency reported here (current density per unit of fuel supplied per sec) is the highest on record. A power density of 184 (mW.cm-2) is achieved at 226ºC with hydrogen flow rate of 4.1 ml/minute. The third electrolyte is a novel type of ionic liquids which is made by addition of a super strong Brønsted acid to a super weak Brønsted base. Here it is shown that by allowing the proton of transient HAlCl4, to relocate on a very weak base that is also stable to superacids, we can create an anhydrous ionic liquid, itself a superacid, in which the proton is so loosely bound that at least 50% of the electrical conductivity is due to the motion of free protons. The protic ionic liquids (PILs) described, pentafluoropyridinium tetrachloroaluminate and 5-chloro-2,4,6-trifluoropyrimidinium tetrachloroaluminate, might be the forerunner of a class of materials in which the proton plasma state can be approached.

Contributors

Agent

Created

Date Created
  • 2013

150314-Thumbnail Image.png

Effects of extrinsic and intrinsic proton activity on the mechanism of oxygen reduction in ionic liquids

Description

Mechanisms for oxygen reduction are proposed for three distinct cases covering two ionic liquids of fundamentally different archetypes and almost thirty orders of magnitude of proton activity. Proton activity is

Mechanisms for oxygen reduction are proposed for three distinct cases covering two ionic liquids of fundamentally different archetypes and almost thirty orders of magnitude of proton activity. Proton activity is treated both extrinsically by varying the concentration and intrinsically by selecting proton donors with a wide range of aqueous pKa values. The mechanism of oxygen reduction in ionic liquids is introduced by way of the protic ionic liquid (pIL) triethylammonium triflate (TEATf) which shares some similarities with aqueous acid solutions. Oxygen reduction in TEATf begins as the one electron rate limited step to form superoxide, O2*-, which is then rapidly protonated by the pIL cation forming the perhydroxyl radical, HO2*. The perhydroxyl radical is further reduced to peroxidate (HO2-) and hydrogen peroxide in proportions in accordance with their pKa. The reaction does not proceed beyond this point due to the adsorption of the conjugate base triethylammine interfering with the disproportionation of hydrogen peroxide. This work demonstrates that this mechanism is consistent across Pt, Au, Pd, and Ag electrodes. Two related sets of experiments were performed in the inherently aprotic ionic liquid 1-butyl-2,3-dimethylimidazolium triflate (C4dMImTf). The first involved the titration of acidic species of varying aqueous pKa into the IL while monitoring the extent of oxygen reduction as a function of pKa and potential on Pt and glassy carbon (GC) electrodes. These experiments confirmed the greater propensity of Pt to reduce oxygen by its immediate and abrupt transition from one electron reduction to four electron reduction, while oxygen reduction on GC gradually approaches four electron reduction as the potentials were driven more cathodic. The potential at which oxygen reduction initiates shows general agreement with the Nernst equation and the acid's tabulated aqueous pKa value, however at the extremely acidic end, a small deviation is observed. The second set of experiments in C4dMImTf solicited water as the proton donor for oxygen reduction in an approximation of the aqueous alkaline case. The water content was varied between extremely dry (<0.1 mol% H2O) and saturated (approximately 15.8 mol% H2O}). As the water content increased so too did the extent of oxygen reduction eventually approach two electrons on both Pt and GC. However, additional water led to a linear increase in the Tafel slope under enhanced mass transport conditions up to the point of 10 mol% water. This inhibition of oxygen adsorption is the result of the interaction between superoxide and water and more specifically is proposed to be associated with decomposition of theC4dMIm+ cation by hydroxide at the elevated temperatures required for the experiment. Oxygen reduction on both Pt and GC follows Nernstian behavior as the water content is increased. Separate mechanisms for oxygen reduction on Pt and GC are proposed based on the nature of the Nernstian response in these systems.

Contributors

Agent

Created

Date Created
  • 2011