Matching Items (8)
Filtering by

Clear all filters

152912-Thumbnail Image.png
Description
During the downswing all golfers must roll their forearms and twist the club handle in order to square the club face into impact. Anecdotally some instructors say that rapidly twisting the handle and quickly closing the club face is the best technique while others disagree and suggest the opposite.

During the downswing all golfers must roll their forearms and twist the club handle in order to square the club face into impact. Anecdotally some instructors say that rapidly twisting the handle and quickly closing the club face is the best technique while others disagree and suggest the opposite. World class golfers have swings with a range of club handle twist velocities (HTV) from very slow to very fast and either method appears to create a successful swing. The purpose of this research was to discover the relationship between HTV at impact and selected body and club biomechanical characteristics during a driver swing. Three-dimensional motion analysis methods were used to capture the swings of 94 tour professionals. Pearson product-moment correlation was used to determine if a correlation existed between HTV and selected biomechanical characteristics. The total group was also divided into two sub-groups of 32, one group with the fastest HTV (Hi-HTV) and the other with the slowest HTV (Lo-HTV). Single factor ANOVAs were completed for HTV and each selected biomechanical parameter. No significant differences were found between the Hi-HTV and Lo-HTV groups for both clubhead speed and driving accuracy. Lead forearm supination velocity at impact was found to be significantly different between groups with the Hi-HTV group having a higher velocity. Lead wrist extension velocity at impact, while not being significantly different between groups was found to be positive in both groups, meaning that the lead wrist is extending at impact. Lead wrist ulnar deviation, lead wrist release and trail elbow extension velocities at maximum were not significantly different between groups. Pelvis rotation, thorax rotation, pelvis side bend and pelvis rotation at impact were all significantly different between groups, with the Lo-HTV group being more side bent tor the trail side and more open at impact. These results suggest that world class golfers can successfully use either the low or high HTV technique for a successful swing. From an instructional perspective it is important to be aware of the body posture and wrist/forearm motion differences between the two techniques so as to be consistent when teaching either method.
ContributorsCheetham, Phillip (Author) / Hinrichs, Richard (Thesis advisor) / Ringenbach, Shannon (Committee member) / Dounskaia, Natalia (Committee member) / Crews, Debra (Committee member) / Arizona State University (Publisher)
Created2014
153020-Thumbnail Image.png
Description
Voluntary exercise has been shown to generate post exercise improvements in executive function within the attention-deficit hyperactivity disorder (ADHD) population. Research is limited on the link between exercise and motor function in this population. Whether or not changes in executive and motor function are observed under assisted exercise conditions is

Voluntary exercise has been shown to generate post exercise improvements in executive function within the attention-deficit hyperactivity disorder (ADHD) population. Research is limited on the link between exercise and motor function in this population. Whether or not changes in executive and motor function are observed under assisted exercise conditions is unknown. This study examined the effect of a six-week cycling intervention on executive and motor-function responses in young adult females with ADHD. Participants were randomized to either a voluntary exercise (VE) or an assisted exercise (AE) group. Both groups performed 30 minute cycling sessions, three times per week, at either a voluntary or assisted rate, on a modified Theracycle Model 200 motorized stationary cycle ergometer. The Mann-Whitney U tests were used to detect median differences between groups, and the Wilcoxon signed-rank tests were used to test median differences within groups. Executive function improvements were greater for AE compared to VE in activation (MDNAE = 162 vs. MDNVE = 308, U = .00, p = .076, ES = .79); planning (MDNAE = 51.0 vs. MDNAE = 40.5, U = .00, p = .083, ES = .77); attention (MDNAE = 13.0 vs. MDNVE = 10.0, U = .00, p = .083, ES = .77); and working memory (MDNAE = 10.0 vs. MDNVE = 6.5, U = .00, p = .076, ES = .79). Motor function improvements were greater for AE compared to VE in manual dexterity (MDNAE = 18 vs. MDNVE = 15.8, U = .00, p = .083, ES = .77); bimanual coordination (MDNAE = 28.0 vs. MDNVE = 25.3, U = .00, p = .083, ES = .77); and gross motor movements of the fingers, hands, and arms (MDNAE = 61.7 vs. MDNVE = 56.0, U = .00, p = .083, ES = .77). Deficits in executive and motor functioning have been linked to lifelong social and psychological impairments in individuals with ADHD. Finding ways to improve functioning in these areas is important for cognitive, emotional and social stability. Compared to VE, AE is a more effective strategy for improving executive and motor functioning in young adult females with ADHD.
ContributorsBirchfield, Natasha (Author) / Ringenbach, Shannon (Thesis advisor) / Lee, Chong (Committee member) / Chisum, Jack (Committee member) / Campbell, Kathyrn (Committee member) / Arizona State University (Publisher)
Created2014
136197-Thumbnail Image.png
Description
This study examines cognitive and motor function in adolescents with Down syndrome (DS) following an 8-week assisted cycling therapy intervention. Forty-four participants were randomly assigned to three groups consisting of an assisted cycling (AC) (i.e., exercise accomplished through the use of a motor), a voluntary cycling (VC) (self-selected cadence), and

This study examines cognitive and motor function in adolescents with Down syndrome (DS) following an 8-week assisted cycling therapy intervention. Forty-four participants were randomly assigned to three groups consisting of an assisted cycling (AC) (i.e., exercise accomplished through the use of a motor), a voluntary cycling (VC) (self-selected cadence), and a no cycling (NC) control group. Both ACT and VC groups rode a stationary bicycle for three 30-minute sessions a week, for a total of eight weeks. Participants completed cognitive testing that assessed information processing and manual dexterity at the beginning and at the end of the 8-week intervention. Consistent with our hypothesis, the results showed that information processing and manual dexterity improved following 8 weeks of cycling for the ACT group. These results were not seen for individuals in the voluntary and non-exercise groups. Our results suggest that assisted cycling therapy may induce permanent changes in the prefrontal cortex in adolescents with DS.
ContributorsJimenez, Andrew (Author) / Ringenbach, Shannon (Thesis director) / Kulinna, Pamela (Committee member) / Barrett, The Honors College (Contributor) / School of Nutrition and Health Promotion (Contributor)
Created2015-05
137831-Thumbnail Image.png
Description
The aim of this study is to understand the affects of grip strength and manual dexterity in activities of daily living (ADL) in persons with Down syndrome (DS). This is important because it could help with future interventions that are focused around improving related disadvantages in this particular population. Ten

The aim of this study is to understand the affects of grip strength and manual dexterity in activities of daily living (ADL) in persons with Down syndrome (DS). This is important because it could help with future interventions that are focused around improving related disadvantages in this particular population. Ten participants with DS performed the manual dexterity tests (i.e., Purdue Pegboard) and measured their grip strength with a hydraulic dynamometer. Overall, grip strength was lower than the average for the typical population and was reduced after aeorbic exercise. Improvements, however, were found in their manual dexterity from pre-test to post-test. This indicates that the assisted moderate intensity exercise intervention helped their dexterity performance. The improvements in dexterity are consistent with previous research conducted by Ringenbach et al. (2007). These results suggest that a moderate intensity treadmill walking exercise intervention can increase precision and efficiency in dexterity in persons with Down syndrome, however their grip force production may be stimulated by another means.
ContributorsSemper, Logan (Author) / Ringenbach, Shannon (Thesis director) / Kulinna, Pamela (Committee member) / Barrett, The Honors College (Contributor) / School of Nutrition and Health Promotion (Contributor)
Created2012-12
154200-Thumbnail Image.png
Description
Introduction. Intervertebral disc degeneration (DD) is one of the most common diagnoses in patients with neck pain and contributes to worldwide disability. Despite the advances in diagnostic imaging today, little is known about functional status of cervical DD. The purpose of this research was to 1) develo

Introduction. Intervertebral disc degeneration (DD) is one of the most common diagnoses in patients with neck pain and contributes to worldwide disability. Despite the advances in diagnostic imaging today, little is known about functional status of cervical DD. The purpose of this research was to 1) develop and validate an ovine model of cervical spine DD, 2) to quantify and compare the effect of disc lesions on dynamic spinal stiffness, and 3) study the effect of disc lesions on spinal accelerations and displacements during two types of spinal manipulative therapy (SMT). Methods. Fifteen sheep received surgically induced disc injury to the mid-cervical spine via scalpel wound a minimum of five months earlier and 15 sheep served as controls. All animals were biomechanically assessed at the level of the lesion using swept-sine mechanical loads from 0-20 Hz under load control to quantify dynamic dorsoventral (DV) spine stiffness (load/deformation, N/mm). The effect of disc lesion on stiffness was assessed using a one-factor repeated measures ANOVA comparing 32 mechanical excitation frequencies. Tri-axial accelerometers rigidly attached to adjacent vertebrae across the target level further evaluated the effect of disc lesion on spinal motion response during two types of SMTs. A 2x6x2 repeated measures ANOVA examined the effect of disc lesion and SMT force-time profile on spine motion response. Postmortem histological analysis graded specimens at the target site and comparison was made with descriptive statistics. Results. Annular disc tears were only observed in the disc lesion group and the mild degeneration identified was localized to the injured annular tissue that did not progress to affect other areas of the disc. No difference in overall DD grading was found among the groups. DV stiffness was significantly increased in the disc lesion group by approximately 34% at 31 of 32 frequencies examined (p<.05). SMTs resulted in decreased displacements in the disc lesion group (p<.05), and SMT type significantly influenced spinal accelerations for both the DV and axial planes. Conclusion. Disc lesions in the ovine cervical spine produce localized annular degenerative changes that increase the cervical spine dynamic stiffness and reduce its spinal motion response during manual examination and treatment that is further augmented by the force-time profile administered by the clinician.
ContributorsColloca, Christopher (Author) / Hinrichs, Richard N (Thesis advisor) / Abbas, James (Committee member) / Ringenbach, Shannon (Committee member) / Hooker, Steven (Committee member) / Arizona State University (Publisher)
Created2015
157912-Thumbnail Image.png
Description
Background: Effective glucose management using exercise modalities in older patients with type 2 diabetes and activities of daily living (ADL) disabilities are unknown.

Purpose: The study investigated the acute effects of motor-assisted cycling and functional electrical stimulation (FES) cycling on the 2-h postprandial glucose responses compared with sitting control

Background: Effective glucose management using exercise modalities in older patients with type 2 diabetes and activities of daily living (ADL) disabilities are unknown.

Purpose: The study investigated the acute effects of motor-assisted cycling and functional electrical stimulation (FES) cycling on the 2-h postprandial glucose responses compared with sitting control in older adults with type 2 diabetes and ADL disabilities.

Methods: The study used a 3×3 crossover study design. Nine participants were randomly assigned to one of the three treatment sequences: ABC, BCA, and CAB. (A, motor-assisted cycling; B, FES cycling; C, sitting control). Linear mixed models (LMM) with Bonferroni post-hoc tests were used to test the mean differences for the 2-h postprandial glucose, estimated by the area under the curve (AUC) and incremental AUC (iAUC), between intervention and control treatments after adjustment for covariates (e.g., age, sex, and race).

Results: There were significant mean differences for iAUC (p = 0.005) and AUC (p = 0.038) across motor-assisted cycling, control, and FES cycling treatments. The FES cycling had a lower mean of 2-hour postprandial iAUC as compared with sitting control (iAUC 3.98 mmol∙h/L vs 6.92 mmol∙h/L, p = 0.006, effect size [ES] = 1.72) and the motor-assisted cycling (iAUC, 3.98 mmol∙h/L vs 6.19 mmol∙h/L , p = 0.0368, ES = 1.29), respectively. The FES cycling also had a lower mean of the 2-hour postprandial AUC as compared with sitting control (AUC, 18.29 mmol∙h/L vs 20.95 mmol∙h/L, p = 0.043, ES = 0.89), but had an AUC similar to the motor-assisted cycling (18.29 mmol∙h/L vs 20.23 mmol∙h/L , p = 0.183, ES = 0.19). There were no statistical differences in iAUC (6.19 mmol∙h/L vs 6.92 mmol∙h/L) and AUC (20.23 mmol∙h/L vs 20.95 mmol∙h/L) between the motor-assisted cycling and sitting control (all p>0.05).

Conclusion: Performing 30 minutes of FES cycling on a motor-assisted bike (40 Hz, 39 rpm, 25-29 mA) significantly decreased the 2-h postprandial glucose levels in older adults with type 2 diabetes and ADL disabilities. These findings suggested that FES cycling can be a promising exercise modality for glucose management in diabetic patients with ADL disabilities.
Contributorsma, tongyu (Author) / Lee, Chong (Thesis advisor) / Hooker, Steven (Committee member) / Shaibi, Gabriel (Committee member) / Johnston, Carol (Committee member) / Ringenbach, Shannon (Committee member) / Arizona State University (Publisher)
Created2019
153970-Thumbnail Image.png
Description
This study examines cognitive and motor function in typical older adults following acute exercise. Ten older adults (Mage = 65.1) completed a single session of assisted cycling (AC) (i.e., exercise accomplished through the use of a motor), voluntary cycling (VC) (self-selected cadence), and a no cycling (NC) control group.

This study examines cognitive and motor function in typical older adults following acute exercise. Ten older adults (Mage = 65.1) completed a single session of assisted cycling (AC) (i.e., exercise accomplished through the use of a motor), voluntary cycling (VC) (self-selected cadence), and a no cycling (NC) control group. These sessions were randomized and separated by approximately one week. Both ACT and VC groups rode a stationary bicycle for 30-minutes each session. These sessions were separated by at least two days. Participants completed cognitive testing that assessed information processing and set shifting and motor testing including gross and fine motor performance at the beginning and at the end of each session. Consistent with our hypothesis concerning manual dexterity, the results showed that manual dexterity improved following the ACT session more than the VC or NC sessions. Improvements in set shifting were also found for the ACT session but not for the VC or NC sessions. The results are interpreted with respect to improvements in neurological function in older adults following acute cycling exercise. These improvements are balance, manual dexterity, and set shifting which have a positive effects on activities of daily living; such as, decrease risk of falls, improve movements like eating and handwriting, and increase ability to multitask.
ContributorsSemken, Keith (Author) / Ringenbach, Shannon (Thesis advisor) / Der Ananian, Cheryl (Committee member) / Buman, Matthew (Committee member) / Arizona State University (Publisher)
Created2015
190901-Thumbnail Image.png
Description
The relationship between sleep and physical activity is an area of growing scientific interest, particularly in the context of older adults. The importance of examining long sleep duration and its influence on physical activity in this demographic becomes increasingly relevant given rising healthcare costs. This dissertation aims to investigate this

The relationship between sleep and physical activity is an area of growing scientific interest, particularly in the context of older adults. The importance of examining long sleep duration and its influence on physical activity in this demographic becomes increasingly relevant given rising healthcare costs. This dissertation aims to investigate this intricate relationship via secondary analysis by examining the effects of moderate time-in-bed (TIB) restriction (60 minutes per night)) on various intensities of physical activity (sedentary, light, moderate, vigorous, moderate-vigorous physical activity) in older adults classified as long sleepers and average duration sleepers. It was hypothesized that moderate TIB restriction would result in differential changes in physical activity levels across various intensities, with long sleepers exhibiting increased physical activity and average sleepers displaying decreased activity, potentially influenced by alterations in TST (total sleep time) and SE (sleep efficiency). Utilizing a randomized controlled trial design, this study examined the effect of treatment changes in objectively measures activity (waist actigraphy) and subjects physical activity levels as measured by the Godin Leisure-Time Exercise Questionnaire . Eligible participants were long sleepers (sleeping > 9 hours per night) and average sleepers (sleeping 7-9 hours per night). Both types of sleepers were either randomized to TIB restriction or asked to maintain their average sleep patterns. Mean TIB restriction compared with baseline was 39.5 minutes in average sleepers and 52.9 minutes in long sleepers randomized to TIB restriction . Contrary to the original hypothesis, no significant effect of TIB restriction was observed across all physical activity levels in either long sleepers or average sleepers. However, a notable association was found between increased sleep efficiency (+0.09% [SD = ± 4.64%]) and light physical activity (±31 minutes [SD = ± 104.81, R=0.445, P < 0.007]) in long sleepers undergoing TIB restriction. While this study presents several methodological limitations, including its nature as a secondary analysis and the less-than-intended achievement of TIB restriction, it adds a valuable layer to the existing body of research on sleep and physical activity in older adults. The findings suggest that moderate TIB restriction may not be sufficiently impactful to change behavior in physical activity levels, thus highlighting the need for more nuanced, targeted research in this domain.
ContributorsPerry, Christopher (Author) / Youngstedt, Shawn D (Thesis advisor) / Petrov, Megan (Committee member) / Swan, Pamela (Committee member) / Buman, Matthew (Committee member) / Ringenbach, Shannon (Committee member) / Arizona State University (Publisher)
Created2023