Matching Items (3)
Filtering by

Clear all filters

132807-Thumbnail Image.png
Description
About 75% of men and 66.58% of women are considered overweight or obese (BMI ≥25). $117 billion dollars is spent each year in medical costs due to physical inactivity. Aerobic exercise has been well defined in its’ benefits to cardiovascular health; however, the effects of resistance training are still not

About 75% of men and 66.58% of women are considered overweight or obese (BMI ≥25). $117 billion dollars is spent each year in medical costs due to physical inactivity. Aerobic exercise has been well defined in its’ benefits to cardiovascular health; however, the effects of resistance training are still not well defined. The purpose of this preliminary analysis was to evaluate the vascular health effects (central and peripheral blood pressure and VO2 max) of two different types of resistance training programs: high load, low repetitions resistance training and low load, high repetitions resistance training. Fourteen participants aged 18-55 years (6 males, 8 females) were involved in this preliminary analysis. Data were collected before and after the 12-week long exercise program (36 training sessions) via pulse wave analysis and VO2peak testing. Multivariate regression analysis of training program effects, while adjusting for body mass index and time, did not result in significant training effects on central and peripheral diastolic blood pressure, nor VO2peak. A statistical trend was observed between the different training programs for systolic blood pressure, suggesting that subjects partaking in the high load, low repetitions program exhibited higher systolic blood pressures than the low load, high repetitions group. With a larger sample size, the difference in systolic blood pressure may increase between training program groups and indicate that greater loads with minimal repetitions may increase lead to clinically significant elevations in blood pressure. Further work is needed to uncover the relationship between different types of resistance training and blood pressure, especially if these lifting regimens are continued for longer lengths of time.
ContributorsHill, Cody Alan (Co-author) / Hill, Cody (Co-author) / Whisner, Corrie (Thesis director) / Angadi, Siddhartha (Committee member) / College of Health Solutions (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
148321-Thumbnail Image.png
Description

This study examines the effectiveness of two modes of exercise on inhibitory control in adults with Down Syndrome (DS). Thirteen participants attended four sessions: a baseline assessment, an Assisted Cycling Therapy (ACT) session, a Resistance Training (RT) session, and a session of No Training (NT). In the baseline assessment, 1-repetition

This study examines the effectiveness of two modes of exercise on inhibitory control in adults with Down Syndrome (DS). Thirteen participants attended four sessions: a baseline assessment, an Assisted Cycling Therapy (ACT) session, a Resistance Training (RT) session, and a session of No Training (NT). In the baseline assessment, 1-repetition max (1RM) measurements and voluntary pedal rate measurements were taken. In the resistance training session, the leg press, chest press, seated row, leg curl, shoulder press, and latissimus pulldown were performed. In the cycling intervention, the participant completed 30 minutes of cycling. The Erikson Flanker task was administered prior to each session (i.e., pretest) and after the intervention (i.e., post-test). The results were somewhat consistent with the hypothesis that inhibition time improved more following RT and ACT than NT. there was also a significant difference between ACT and NT. Additionally, it was hypothesized that all measures would improve following each acute exercise intervention, but the most significant improvements were seen following ACT. In conclusion, an acute session of ACT demonstrated a significant trend towards improvements in inhibitory control in adults with DS which we interpreted using a model of neural changes.

ContributorsHayes, Claire (Author) / Ringenbach, Shannon (Thesis director) / Arnold, Nate (Committee member) / Rand, Miya (Committee member) / Edson College of Nursing and Health Innovation (Contributor) / College of Health Solutions (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
131614-Thumbnail Image.png
Description
Resistance training is a modality of exercise that has grown in popularity over the past two decades, particularly for its role in improving muscular fitness by increasing muscular strength, power, and hypertrophy. Due to this increase in demand, more and more people are entering the gym for their first time

Resistance training is a modality of exercise that has grown in popularity over the past two decades, particularly for its role in improving muscular fitness by increasing muscular strength, power, and hypertrophy. Due to this increase in demand, more and more people are entering the gym for their first time and eager to learn about the ways to get bigger and stronger as fast as possible. The aim of this summary is to provide evidence-based information that resistance trainers or fitness personnel can use to design an effective training program. In order to optimize your resistance training protocol there are three main areas to focus on: increasing volume, managing intensity, and active recovery.
ContributorsEsparza, Ryan David (Author) / Nolan, Nicole (Thesis director) / Marsit, Joseph (Committee member) / Broman, Tannah (Committee member) / College of Health Solutions (Contributor) / Department of Marketing (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05