Matching Items (8)
Filtering by

Clear all filters

152200-Thumbnail Image.png
Description
Magnetic Resonance Imaging using spiral trajectories has many advantages in speed, efficiency in data-acquistion and robustness to motion and flow related artifacts. The increase in sampling speed, however, requires high performance of the gradient system. Hardware inaccuracies from system delays and eddy currents can cause spatial and temporal distortions in

Magnetic Resonance Imaging using spiral trajectories has many advantages in speed, efficiency in data-acquistion and robustness to motion and flow related artifacts. The increase in sampling speed, however, requires high performance of the gradient system. Hardware inaccuracies from system delays and eddy currents can cause spatial and temporal distortions in the encoding gradient waveforms. This causes sampling discrepancies between the actual and the ideal k-space trajectory. Reconstruction assuming an ideal trajectory can result in shading and blurring artifacts in spiral images. Current methods to estimate such hardware errors require many modifications to the pulse sequence, phantom measurements or specialized hardware. This work presents a new method to estimate time-varying system delays for spiral-based trajectories. It requires a minor modification of a conventional stack-of-spirals sequence and analyzes data collected on three orthogonal cylinders. The method is fast, robust to off-resonance effects, requires no phantom measurements or specialized hardware and estimate variable system delays for the three gradient channels over the data-sampling period. The initial results are presented for acquired phantom and in-vivo data, which show a substantial reduction in the artifacts and improvement in the image quality.
ContributorsBhavsar, Payal (Author) / Pipe, James G (Thesis advisor) / Frakes, David (Committee member) / Kodibagkar, Vikram (Committee member) / Arizona State University (Publisher)
Created2013
157380-Thumbnail Image.png
Description
A direct Magnetic Resonance (MR)-based neural activity mapping technique with high spatial and temporal resolution may accelerate studies of brain functional organization.

The most widely used technique for brain functional imaging is functional Magnetic Resonance Image (fMRI). The spatial resolution of fMRI is high. However, fMRI signals are highly influenced

A direct Magnetic Resonance (MR)-based neural activity mapping technique with high spatial and temporal resolution may accelerate studies of brain functional organization.

The most widely used technique for brain functional imaging is functional Magnetic Resonance Image (fMRI). The spatial resolution of fMRI is high. However, fMRI signals are highly influenced by the vasculature in each voxel and can be affected by capillary orientation and vessel size. Functional MRI analysis may, therefore, produce misleading results when voxels are nearby large vessels. Another problem in fMRI is that hemodynamic responses are slower than the neuronal activity. Therefore, temporal resolution is limited in fMRI. Furthermore, the correlation between neural activity and the hemodynamic response is not fully understood. fMRI can only be considered an indirect method of functional brain imaging.

Another MR-based method of functional brain mapping is neuronal current magnetic resonance imaging (ncMRI), which has been studied over several years. However, the amplitude of these neuronal current signals is an order of magnitude smaller than the physiological noise. Works on ncMRI include simulation, phantom experiments, and studies in tissue including isolated ganglia, optic nerves, and human brains. However, ncMRI development has been hampered due to the extremely small signal amplitude, as well as the presence of confounding signals from hemodynamic changes and other physiological noise.

Magnetic Resonance Electrical Impedance Tomography (MREIT) methods could have the potential for the detection of neuronal activity. In this technique, small external currents are applied to a body during MR scans. This current flow produces a magnetic field as well as an electric field. The altered magnetic flux density along the main magnetic field direction caused by this current flow can be obtained from phase images. When there is neural activity, the conductivity of the neural cell membrane changes and the current paths around the neurons change consequently. Neural spiking activity during external current injection, therefore, causes differential phase accumulation in MR data. Statistical analysis methods can be used to identify neuronal-current-induced magnetic field changes.
ContributorsFu, Fanrui (Author) / Sadleir, Rosalind (Thesis advisor) / Kodibagkar, Vikram (Committee member) / Kleim, Jeffrey (Committee member) / Muthuswamy, Jitendran (Committee member) / Helms Tillery, Stephen (Committee member) / Arizona State University (Publisher)
Created2019
137354-Thumbnail Image.png
Description
The objective of the research presented here was to validate the use of kinetic models for the analysis of the dynamic behavior of a contrast agent in tumor tissue and evaluate the utility of such models in determining kinetic properties - in particular perfusion and molecular binding uptake associated with

The objective of the research presented here was to validate the use of kinetic models for the analysis of the dynamic behavior of a contrast agent in tumor tissue and evaluate the utility of such models in determining kinetic properties - in particular perfusion and molecular binding uptake associated with tissue hypoxia - of the imaged tissue, from concentration data acquired with dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) procedure. Data from two separate DCE-MRI experiments, performed in the past, using a standard contrast agent and a hypoxia-binding agent respectively, were analyzed. The results of the analysis demonstrated that the models used may provide novel characterization of the tumor tissue properties. Future research will work to further characterize the physical significance of the estimated parameters, particularly to provide quantitative oxygenation data for the imaged tissue.
ContributorsMartin, Jonathan Michael (Author) / Kodibagkar, Vikram (Thesis director) / Rege, Kaushal (Committee member) / Barrett, The Honors College (Contributor) / Chemical Engineering Program (Contributor) / School of Mathematical and Statistical Sciences (Contributor)
Created2013-12
137469-Thumbnail Image.png
Description
Oxygen delivery is crucial for the development of healthy, functional tissue. Low tissue oxygenation, or hypoxia, is a characteristic that is common in many tumors. Hypoxia contributes to tumor malignancy and can reduce the success of chemotherapy and radiation treatment. There is a current need to noninvasively measure tumor oxygenation

Oxygen delivery is crucial for the development of healthy, functional tissue. Low tissue oxygenation, or hypoxia, is a characteristic that is common in many tumors. Hypoxia contributes to tumor malignancy and can reduce the success of chemotherapy and radiation treatment. There is a current need to noninvasively measure tumor oxygenation or pO2 in patients to determine a personalized treatment method. This project focuses on creating and characterizing nanoemulsions using a pO2 reporter molecule hexamethyldisiloxane (HMDSO) and its longer chain variants as well as assessing their cytotoxicity. We also explored creating multi-modal (MRI/Fluorescence) nanoemulsions.
ContributorsGrucky, Marian Louise (Author) / Kodibagkar, Vikram (Thesis director) / Rege, Kaushal (Committee member) / Stabenfeldt, Sarah (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2013-05
135102-Thumbnail Image.png
Description
Magnetic resonance imaging (MRI) of changes in metabolic activity in tumors and metabolic abnormalities can provide a window to understanding the complex behavior of malignant tumors. Both diagnostics and treatment options can be improved through the further comprehension of the processes that contribute to tumor malignancy and growth. By detecting

Magnetic resonance imaging (MRI) of changes in metabolic activity in tumors and metabolic abnormalities can provide a window to understanding the complex behavior of malignant tumors. Both diagnostics and treatment options can be improved through the further comprehension of the processes that contribute to tumor malignancy and growth. By detecting and disturbing this activity through personalized treatments, it is the hope to provide better diagnostics and care to patients. Experimenting with multicellular tumor spheroids (MCTS) allows for a rapid, inexpensive and convenient solution to studying multiple in vitro tumors. High quality magnetic resonance images of small samples, such as spheroid, however, are difficult to achieve with current radio frequency coils. In addition, in order for the information provided by these scans to accurately represent the interactions and metabolic activity in vivo, there is a need for a perfused vascular network. A perfused vascular network has the potential to improve metabolic realism and particle transport within a tumor spheroid. By creating a more life-like cancer model and allowing the progressive imaging of metabolic functions of such small samples, a better, more efficient mode of studying metabolic activity in cancer can be created and research efforts can expand. The progress described in this paper attempts to address both of these current shortcomings of metabolic cancer research and offers potential solutions, while acknowledging the potential of future work to improve cancer research with MCTS.
ContributorsTobey, John Paul (Author) / Kodibagkar, Vikram (Thesis director) / Sadleir, Rosalind (Committee member) / Barrett, The Honors College (Contributor)
Created2016-12
155261-Thumbnail Image.png
Description
Dynamic susceptibility contrast MRI (DSC-MRI) is a powerful tool used to quantitatively measure parameters related to blood flow and volume in the brain. The technique is known as a “bolus-tracking” method and relies upon very fast scanning to accurately measure the flow of contrast agent into and out of a

Dynamic susceptibility contrast MRI (DSC-MRI) is a powerful tool used to quantitatively measure parameters related to blood flow and volume in the brain. The technique is known as a “bolus-tracking” method and relies upon very fast scanning to accurately measure the flow of contrast agent into and out of a region of interest. The need for high temporal resolution to measure contrast agent dynamics limits the spatial coverage of perfusion parameter maps which limits the utility of DSC-perfusion studies in pathologies involving the entire brain. Typical clinical DSC-perfusion studies are capable of acquiring 10-15 slices, generally centered on a known lesion or pathology.

The methods developed in this work improve the spatial coverage of whole-brain DSC-MRI by combining a highly efficient 3D spiral k-space trajectory with Generalized Autocalibrating Partial Parallel Acquisition (GRAPPA) parallel imaging without increasing temporal resolution. The proposed method is capable of acquiring 30 slices with a temporal resolution of under 1 second, covering the entire cerebrum with isotropic spatial resolution of 3 mm. Additionally, the acquisition method allows for correction of T1-enhancing leakage effects by virtue of collecting two echoes, which confound DSC perfusion measurements. The proposed DSC-perfusion method results in high quality perfusion parameter maps across a larger volume than is currently available with current clinical standards, improving diagnostic utility of perfusion MRI methods, which ultimately improves patient care.
ContributorsTurley, Dallas C (Author) / Pipe, James G (Thesis advisor) / Kodibagkar, Vikram (Thesis advisor) / Frakes, David (Committee member) / Sadleir, Rosalind (Committee member) / Schmainda, Kathleen (Committee member) / Arizona State University (Publisher)
Created2017
155901-Thumbnail Image.png
Description
Transcranial electrical stimulation (tES) is a non-invasive brain stimulation therapy that has shown potential in improving motor, physiological and cognitive functions in healthy and diseased population. Typical tES procedures involve application of weak current (< 2 mA) to the brain via a pair of large electrodes placed on the scalp.

Transcranial electrical stimulation (tES) is a non-invasive brain stimulation therapy that has shown potential in improving motor, physiological and cognitive functions in healthy and diseased population. Typical tES procedures involve application of weak current (< 2 mA) to the brain via a pair of large electrodes placed on the scalp. While the therapeutic benefits of tES are promising, the efficacy of tES treatments is limited by the knowledge of how current travels in the brain. It has been assumed that the current density and electric fields are the largest, and thus have the most effect, in brain structures nearby the electrodes. Recent studies using finite element modeling (FEM) have suggested that current patterns in the brain are diffuse and not concentrated in any particular brain structure. Although current flow modeling is useful means of informing tES target optimization, few studies have validated tES FEM models against experimental measurements. MREIT-CDI can be used to recover magnetic flux density caused by current flow in a conducting object. This dissertation reports the first comparisons between experimental data from in-vivo human MREIT-CDI during tES and results from tES FEM using head models derived from the same subjects. First, tES FEM pipelines were verified by confirming FEM predictions agreed with analytic results at the mesh sizes used and that a sufficiently large head extent was modeled to approximate results on human subjects. Second, models were used to predict magnetic flux density, and predicted and MREIT-CDI results were compared to validate and refine modeling outcomes. Finally, models were used to investigate inter-subject variability and biological side effects reported by tES subjects. The study demonstrated good agreements in patterns between magnetic flux distributions from experimental and simulation data. However, the discrepancy in scales between simulation and experimental data suggested that tissue conductivities typically used in tES FEM might be incorrect, and thus performing in-vivo conductivity measurements in humans is desirable. Overall, in-vivo MREIT-CDI in human heads has been established as a validation tool for tES predictions and to study the underlying mechanisms of tES therapies.
ContributorsIndahlastari, Aprinda (Author) / Sadleir, Rosalind J (Thesis advisor) / Abbas, James (Committee member) / Frakes, David (Committee member) / Kleim, Jeffrey (Committee member) / Kodibagkar, Vikram (Committee member) / Arizona State University (Publisher)
Created2017
135480-Thumbnail Image.png
Description
Compressed sensing magnetic resonance spectroscopic imaging (MRSI) is a noninvasive and in vivo potential diagnostic technique for cancer imaging. This technique undersamples the distribution of specific cancer biomarkers within an MR image as well as changes in the temporal dimension and subsequently reconstructs the missing data. This technique has been

Compressed sensing magnetic resonance spectroscopic imaging (MRSI) is a noninvasive and in vivo potential diagnostic technique for cancer imaging. This technique undersamples the distribution of specific cancer biomarkers within an MR image as well as changes in the temporal dimension and subsequently reconstructs the missing data. This technique has been shown to retain a high level of fidelity even with an acceleration factor of 5. Currently there exist several different scanner types that each have their separate analytical methods in MATLAB. A graphical user interface (GUI) was created to facilitate a single computing platform for these different scanner types in order to improve the ease and efficiency with which researchers and clinicians interact with this technique. A GUI was successfully created for both prospective and retrospective MRSI data analysis. This GUI retained the original high fidelity of the reconstruction technique and gave the user the ability to load data, load reference images, display intensity maps, display spectra mosaics, generate a mask, display the mask, display kspace and save the corresponding spectra, reconstruction, and mask files. Parallelization of the reconstruction algorithm was explored but implementation was ultimately unsuccessful. Future work could consist of integrating this parallelization method, adding intensity overlay functionality and improving aesthetics.
ContributorsLammers, Luke Michael (Author) / Kodibagkar, Vikram (Thesis director) / Hu, Harry (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05