Matching Items (479)
Filtering by

Clear all filters

ContributorsDaval, Charles (Performer) / ASU Library. Music Library (Publisher)
Created2018-03-26
152521-Thumbnail Image.png
DescriptionThe purpose of this project is to explore the influence of folk music in guitar compositions by Manuel Ponce from 1923 to 1932. It focuses on his Tres canciones populares mexicanas and Tropico and Rumba.
ContributorsGarcia Santos, Arnoldo (Author) / Koonce, Frank (Thesis advisor) / Rogers, Rodney (Committee member) / Rotaru, Catalin (Committee member) / Arizona State University (Publisher)
Created2014
152885-Thumbnail Image.png
Description
Patients with malignant brain tumors have a median survival of approximately 15 months following diagnosis, regardless of currently available treatments which include surgery followed by radiation and chemotherapy. Improvement in the survival of brain cancer patients requires the design of new therapeutic modalities that take advantage of common phenotypes. One

Patients with malignant brain tumors have a median survival of approximately 15 months following diagnosis, regardless of currently available treatments which include surgery followed by radiation and chemotherapy. Improvement in the survival of brain cancer patients requires the design of new therapeutic modalities that take advantage of common phenotypes. One such phenotype is the metabolic dysregulation that is a hallmark of cancer cells. It has therefore been postulated that one approach to treating brain tumors may be by metabolic alteration such as that which occurs through the use of the ketogenic diet (KD). The KD is high-fat, low-carbohydrate diet that induces ketosis and has been utilized for the non-pharmacologic treatment of refractory epilepsy. It has been shown that this metabolic therapy enhances survival and potentiates standard therapy in mouse models of malignant gliomas, yet the anti-tumor mechanisms are not fully understood.

The current study reports that KetoCal® (KC; 4:1 fat:protein/carbohydrates), fed ad libitum, alters hypoxia, angiogenic, and inflammatory pathways in a mouse model of glioma. Tumors from animals maintained on KC showed reduced expression of the hypoxia marker carbonic anhydrase 9 (CA IX), a reduction in hypoxia inducible factor 1-alpha (HIF-1α) and decreased activation of nuclear factor kappa B (NF-κB). Animals maintained on KC also showed a reduction in expression of vascular endothelial growth factor receptor 2 (VEGFR2) and decreased microvasculature in their tumors. Further, peritumoral edema was significantly reduced in animals fed the KC and protein analysis showed significantly altered expression of the tight junction protein zona occludens-1 (ZO-1) and the water channeling protein aquaporin-4 (AQP4), both of which have been implicated in malignant processes in glioma, including the formation of peritumoral edema in patients. Taken together the data suggests that KC alters multiple processes involved in malignant progression of gliomas. A greater understanding of the effects of the ketogenic diet as an adjuvant therapy will allow for a more rational approach to its clinical use.
ContributorsWoolf, Eric C (Author) / Scheck, Adrienne C (Thesis advisor) / Lake, Douglas F (Committee member) / LaBaer, Joshua (Committee member) / Arizona State University (Publisher)
Created2014
ContributorsKotronakis, Dimitris (Performer) / ASU Library. Music Library (Publisher)
Created2018-03-01
137354-Thumbnail Image.png
Description
The objective of the research presented here was to validate the use of kinetic models for the analysis of the dynamic behavior of a contrast agent in tumor tissue and evaluate the utility of such models in determining kinetic properties - in particular perfusion and molecular binding uptake associated with

The objective of the research presented here was to validate the use of kinetic models for the analysis of the dynamic behavior of a contrast agent in tumor tissue and evaluate the utility of such models in determining kinetic properties - in particular perfusion and molecular binding uptake associated with tissue hypoxia - of the imaged tissue, from concentration data acquired with dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) procedure. Data from two separate DCE-MRI experiments, performed in the past, using a standard contrast agent and a hypoxia-binding agent respectively, were analyzed. The results of the analysis demonstrated that the models used may provide novel characterization of the tumor tissue properties. Future research will work to further characterize the physical significance of the estimated parameters, particularly to provide quantitative oxygenation data for the imaged tissue.
ContributorsMartin, Jonathan Michael (Author) / Kodibagkar, Vikram (Thesis director) / Rege, Kaushal (Committee member) / Barrett, The Honors College (Contributor) / Chemical Engineering Program (Contributor) / School of Mathematical and Statistical Sciences (Contributor)
Created2013-12
137469-Thumbnail Image.png
Description
Oxygen delivery is crucial for the development of healthy, functional tissue. Low tissue oxygenation, or hypoxia, is a characteristic that is common in many tumors. Hypoxia contributes to tumor malignancy and can reduce the success of chemotherapy and radiation treatment. There is a current need to noninvasively measure tumor oxygenation

Oxygen delivery is crucial for the development of healthy, functional tissue. Low tissue oxygenation, or hypoxia, is a characteristic that is common in many tumors. Hypoxia contributes to tumor malignancy and can reduce the success of chemotherapy and radiation treatment. There is a current need to noninvasively measure tumor oxygenation or pO2 in patients to determine a personalized treatment method. This project focuses on creating and characterizing nanoemulsions using a pO2 reporter molecule hexamethyldisiloxane (HMDSO) and its longer chain variants as well as assessing their cytotoxicity. We also explored creating multi-modal (MRI/Fluorescence) nanoemulsions.
ContributorsGrucky, Marian Louise (Author) / Kodibagkar, Vikram (Thesis director) / Rege, Kaushal (Committee member) / Stabenfeldt, Sarah (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2013-05
137057-Thumbnail Image.png
Description
Osteosarcoma (OS) is the most prevalent primary tumor of bone in the pediatric age group [1]. The long-term cancer free survival has improved in patients with localized cancer; however, less than 20% of patients diagnosed with metastatic disease survive without relapse [2]. While these findings emphasize the urgent need for

Osteosarcoma (OS) is the most prevalent primary tumor of bone in the pediatric age group [1]. The long-term cancer free survival has improved in patients with localized cancer; however, less than 20% of patients diagnosed with metastatic disease survive without relapse [2]. While these findings emphasize the urgent need for new therapeutic agents, the lack of understanding of the factors and the tumor microenvironment that lead to therapy resistance in OS has significantly hampered progress towards improved prognosis. Recent clinical reports have shown a negative correlation between tumor hypoxia and overall survival in OS patients [4]. In addition to the up-regulation of hypoxia inducible factors (HIFs), it has been shown that hypoxia can trigger an adaptive response such as the unfolded protein response (UPR) that allows tumor cells to avoid therapy-induced death [3,4,7,10].
Using in vitro experimental models of both SAOS-2 (non-metastatic) and 143-b (metastatic) osteosarcoma cell lines and Western blot analysis, we have demonstrated that basal levels of molecular chaperone BiP (Binding immunoglobulin protein, or GRP-78) and peIF2α (phospho-eukaryotic initiation factor 2 alpha), both markers of the UPR, were higher in SAOS-2 than 143-b cells. We also show that both these markers were further up-regulated upon exposure to hypoxia, as evidenced by the increase in banding intensity in both SAOS-2 and 143-b cells. Furthermore, analysis of another UPR marker, ATF6 (activating transcription factor 6) showed that basal levels of active nuclear ATF6 were slightly higher in SAOS-2 cells than in 143-b cells. However, unlike the other UPR markers these levels were significantly reduced upon exposure to hypoxia (0.1% O2). In addition to hypoxia, treatment with Cisplatin also had similar effects on the expression of aforementioned UPR markers: BiP and peIF2α. We found that the 143-b OS cells were more sensitive to the Cisplatin treatment than the SAOS-2 OS cells, and thus more prone to cell-mediated death.
Our findings shed light on the unknown mechanisms underlying chemotherapeutic drug resistance in osteosarcoma patients. Our research may lead to novel therapies that seek out and destroy the chemoresistant OS cells within the hypoxia core of tumors, thereby preventing survival and metastasis, and ultimately improving the chances of survival amongst OS patients.
ContributorsFaraj, Janine Jean (Author) / Chandler, Douglas (Thesis director) / Sertil, Aparna (Committee member) / Sweazea, Karen (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor) / School of Historical, Philosophical and Religious Studies (Contributor)
Created2014-05
ContributorsDavin, Colin (Performer) / ASU Library. Music Library (Publisher)
Created2018-10-05
135102-Thumbnail Image.png
Description
Magnetic resonance imaging (MRI) of changes in metabolic activity in tumors and metabolic abnormalities can provide a window to understanding the complex behavior of malignant tumors. Both diagnostics and treatment options can be improved through the further comprehension of the processes that contribute to tumor malignancy and growth. By detecting

Magnetic resonance imaging (MRI) of changes in metabolic activity in tumors and metabolic abnormalities can provide a window to understanding the complex behavior of malignant tumors. Both diagnostics and treatment options can be improved through the further comprehension of the processes that contribute to tumor malignancy and growth. By detecting and disturbing this activity through personalized treatments, it is the hope to provide better diagnostics and care to patients. Experimenting with multicellular tumor spheroids (MCTS) allows for a rapid, inexpensive and convenient solution to studying multiple in vitro tumors. High quality magnetic resonance images of small samples, such as spheroid, however, are difficult to achieve with current radio frequency coils. In addition, in order for the information provided by these scans to accurately represent the interactions and metabolic activity in vivo, there is a need for a perfused vascular network. A perfused vascular network has the potential to improve metabolic realism and particle transport within a tumor spheroid. By creating a more life-like cancer model and allowing the progressive imaging of metabolic functions of such small samples, a better, more efficient mode of studying metabolic activity in cancer can be created and research efforts can expand. The progress described in this paper attempts to address both of these current shortcomings of metabolic cancer research and offers potential solutions, while acknowledging the potential of future work to improve cancer research with MCTS.
ContributorsTobey, John Paul (Author) / Kodibagkar, Vikram (Thesis director) / Sadleir, Rosalind (Committee member) / Barrett, The Honors College (Contributor)
Created2016-12
155581-Thumbnail Image.png
Description
A tumor is a heterogeneous combination of proliferating tumor cells, infiltrating immune cells and stromal components along with a variety of associated host tissue cells, collectively termed the tumor microenvironment (TME). The constituents of the TME and their interaction with the host organ shape and define the properties of tumors

A tumor is a heterogeneous combination of proliferating tumor cells, infiltrating immune cells and stromal components along with a variety of associated host tissue cells, collectively termed the tumor microenvironment (TME). The constituents of the TME and their interaction with the host organ shape and define the properties of tumors and contribute towards the acquisition of hallmark traits such as hypoxia. Hypoxia imparts resistance to cancer from chemotherapy and radiotherapy due to the decreased production of reactive oxygen species and also promotes angiogenesis, malignant progression and metastasis. It also provides a powerful physiological stimulus that can be exploited as a tumor-specific condition, allowing for the rational design of anticancer hypoxia-activated pro-drugs (HAP). Accurate evaluation of tumor oxygenation in response to therapeutics interventions at various stages of growth should provide a better understanding of tumor response to therapy, potentially allowing therapy to be tailored to individual characteristics. The primary goal of this research was to investigate the utility of prospective identification of hypoxic tumors, by two different Magnetic Resonance Imaging (MRI) based oximetry approaches, in successful treatment with hypoxia activated therapy. In the present study, I report the utility of these two techniques 1) PISTOL (Proton Imaging of Siloxanes to map Tissue Oxygenation Levels) and 2) use of a hypoxia binding T1 contrast agent GdDO3NI in reporting the modulations of hypoxia pre and post hypoxia activated therapies in pre-clinical models of cancer. I have performed these studies in non-small cell lung cancer (NSCLC) and epidermoid carcinoma (NCI-H1975 and A431 cell lines, respectively) as well as in patient derived xenograft models of NSCLC. Both the oximetry techniques have the potential to differentiate between normoxic and hypoxic regions of the tumor and reveal both baseline heterogeneity and differential response to therapeutic intervention. The response of the tumor models to therapeutic interventions indicates that, in conjunction with pO2, other factors such as tumor perfusion (essential for delivering HAPs) and relative expression of nitroreductases (essential for activating HAPs) may play an important role. The long term goal of the proposed research is the clinical translation of both the MRI techniques and aiding the design and development of personalized therapy (e.g. patient stratification for novel hypoxia activated pro-drugs) particularly for cancer.
ContributorsAgarwal, Shubhangi (Author) / Kodibagkar, Vikram D (Thesis advisor) / Inge, Landon J (Committee member) / Nikkhah, Mehdi (Committee member) / Pagel, Mark D. (Committee member) / Sadleir, Rosalind J (Committee member) / Arizona State University (Publisher)
Created2017