Matching Items (25)

Filtering by

Clear all filters

149126-Thumbnail Image.png

Collaborative Management of Glen Canyon Dam: The Elevation of Social Engineering Over Law

Description

The operation of Glen Canyon Dam on the Colorado River affects several downstream resources and water uses including water supply for consumptive uses in Arizona, California, and Nevada, hydroelectric power production, endangered species of native fish, recreational angling for non-native

The operation of Glen Canyon Dam on the Colorado River affects several downstream resources and water uses including water supply for consumptive uses in Arizona, California, and Nevada, hydroelectric power production, endangered species of native fish, recreational angling for non-native fish, and recreational boating in the Grand Canyon. Decisions about the magnitude and timing of water releases through the dam involve trade-offs between these resources and uses. The numerous laws affecting dam operations create a hierarchy of legal priorities that should govern these decisions. At the top of the hierarchy are mandatory requirements for water storage and delivery and for conservation of endangered species. Other resources and water uses have lower legal priorities. The Glen Canyon Dam Adaptive Management Program ("AMP") has substituted collaborative decision making among stakeholders for the hierarchy of priorities created by law. The AMP has thereby facilitated non-compliance with the Endangered Species Act by the Bureau of Reclamation, which operates the dam, and has effectively given hydroelectric power production and non-native fisheries higher priorities than they are legally entitled to. Adaptive management is consistent with the laws governing operation of Glen Canyon Dam, but collaborative decision making is not. Nor is collaborative decision making an essential, or even logical, component of adaptive management. As implemented in the case of Glen Canyon Dam, collaborative decision making has actually stifled adaptive management by making agreement among stakeholders a prerequisite to changes in the operation of the dam. This Article proposes a program for adaptive, but not collaborative, management of Glen Canyon Dam that would better conform to the law and would be more amenable to adaptation and experimentation than would the current, stakeholder-centered program.

Contributors

Agent

Created

Date Created
2008-07-18

Urban Heat & Critical Infrastructure Networks: A Viewpoint

Description

The forthcoming century will see cities exposed to temperature rises from urbanisation as well as greenhouse gas induced radiative forcing. Increasing levels of urban heat will have a direct impact upon the people living in cities in terms of health,

The forthcoming century will see cities exposed to temperature rises from urbanisation as well as greenhouse gas induced radiative forcing. Increasing levels of urban heat will have a direct impact upon the people living in cities in terms of health, but will also have an indirect effect by impacting upon the critical infrastructure networks of the city itself (e.g., ICT, transport and energy). Some infrastructures are more resistant than others, but there is a growing reliance on the energy network to provide the power for all of our future critical infrastructure networks. Unfortunately, the energy network is far from resilient from the effects of urban heat and is set to face a perfect storm of increasing temperatures and loadings as demand increases for air conditioning, refrigeration, an electrified transport network and a high-speed ICT network. The result is that any failure on the energy network could quickly cascade across much of our critical infrastructure. System vulnerabilities will become increasingly apparent as the impacts of climate change begin to manifest and this paper calls for interdisciplinary action outlining the need for high resolution monitoring and modelling of the impact of urban heat on infrastructure.

Contributors

Created

Date Created
2013-04-01

Tree and Shade: City of Phoenix Master Plan

Description

Creating a Healthier, More Livable and Prosperous Phoenix

Phoenix is poised to become the next great American City. The Tree and Shade Master Plan presents Phoenix’s leaders and residents a roadmap to creating a 21st Century desert city. The urban forest

Creating a Healthier, More Livable and Prosperous Phoenix

Phoenix is poised to become the next great American City. The Tree and Shade Master Plan presents Phoenix’s leaders and residents a roadmap to creating a 21st Century desert city. The urban forest is a keystone to creating a sustainable city because it solves many problems with one single solution. By investing in trees and the urban forest, the city can reduce its carbon footprint, decrease energy costs, reduce storm water runoff, increase biodiversity, address the urban heat island effect, clean the air, and increase property values. In addition, trees can help to create walkable streets and vibrant pedestrian places. More trees will not solve all the problems, but it is known that for every dollar invested in the urban forest results in an impressive return of $2.23 in benefits.

Phoenix has a strong foundation on which to build the future. Phoenix residents value natural resources and have voted repeatedly to invest in the living infrastructure. For instance, the Phoenix Parks and Preserve Initiative was passed twice with over 75 percent voter approval. This modest sales tax has purchased land for the Sonoran Preserve, funded habitat restoration efforts along Rio Salado, built new parks and planted hundreds of new trees. These projects and others like it provide the base for a healthy urban forest. Trees and engineered shade have the potential to be one of the city’s greatest assets and the Tree and Shade Master Plan provides the framework for creating a healthier, more livable and prosperous Phoenix.

The Urban Forest – Trees for People

The urban forest is a critical component of the living infrastructure. It benefits and attracts residents and tourists alike to live, work, shop and play in the city. Phoenix’s urban forest is a diverse ecosystem of soils, vegetation, trees, associated organisms, air, water, wildlife and people. The urban forest is found not only in parks, mountain preserves and native desert areas, but also in neighborhoods, commercial corridors, industrial parks and along streets. The urban forest is made up of a rich mosaic of private and public property that surrounds the city and provides many environmental, economic, and social benefits.

In order for the urban forest to be a profitable investment, Phoenix must do more than just plant trees. The entire lifecycle of the tree must be addressed because the current planting, maintenance, and irrigation practices are preventing many trees from providing their maximum return on investment. The Tree and Shade Master Plan provides a detailed roadmap to address these issues, as well as many others, with realistic and incremental steps. To succeed, this plan requires a long-term investment from the residents and leaders of Phoenix.

Trees are Solution Multipliers

Solution multipliers solve numerous problems simultaneously. Trees are a perfect example of a solution multiplier because when planted and maintained correctly, they can provide many economic, environmental, and social benefits. According to the US Forest Service, trees benefit the community by: providing a cooling effect that reduces energy costs; improving air quality; strengthening quality of place and the local economy; reducing storm water runoff; improving social connections; promoting smart growth and compact development; and creating walkable communities (US Forest Service and Urban & Community Forestry). Trees are high-yield assets; for example, the City of Chicago values its trees at $2.3 billion dollars. Trees have a documented return on investment (ROI) in Arizona of $2.23 for every $1 invested (US Department of Agriculture Forest Service). This demonstrates the important role that trees have within the city's economy. This is why it is critical to manage and invest in the urban forest; the health of the urban forest is closely linked to the economic health of the city.

Maintainable Infrastructure

Phoenix is a desert city that has a history of several decades of drought. In order to achieve a healthy urban forest we must use water wisely. Currently, 60 percent of Phoenix’s water is used outdoors, mainly for landscape irrigation. According to the City of Phoenix’s Water Services Department, Phoenix has an adequate sustainable water supply to meet the State of Arizona’s 100-year assured water supply standard. This includes growth in Phoenix’s system water demand over the next 20 years or more. Nonetheless, to achieve a maintainable urban forest, water must be used more efficiently. This is done with high-efficiency irrigation systems, use of drought-tolerant plant material, strategic placement of shade corridors and continued education. In order for a healthy urban forest to exist, it must be coupled with strong water management.

Implementation

The Urban Forest Infrastructure Team and the Parks and Recreation Department are charged with coordinating and maintaining the Tree and Shade Master Plan. Many City departments will implement the plan as they work to fulfill their own missions. The Tree and Shade Master Plan will not only provide a framework to achieve an average 25 percent tree canopy coverage by 2030 but will also help to achieve many goals and policies from the Green Phoenix Initiative and the voter ratified General Plan.

The plan proposes incremental steps to achieve the 2030 vision and canopy goal. The City of Phoenix is beginning to put a process in place to preserve, maintain, and redevelop the urban forest. This plan intends to increase the quality of life and economic vitality of the city by recommending ways to create a sustainable urban forest for future generations.

Contributors

Agent

Created

Date Created
2010

Climate and Health Strategic Plan for Maricopa County, 2016-2021

Description

Maricopa County experiences extreme heat, which has adverse effects on community health and has been recognized as a serious public health issue. Therefore, the Maricopa County Department of Public Health (MCDPH) has conducted surveillance activities to assess morbidity and mortality

Maricopa County experiences extreme heat, which has adverse effects on community health and has been recognized as a serious public health issue. Therefore, the Maricopa County Department of Public Health (MCDPH) has conducted surveillance activities to assess morbidity and mortality due to extreme heat for the past 10 years. In 2016, MCDPH was interested in expanding their scope to include other climate-sensitive public health hazards. Subsequently, a network of stakeholders with an interest in the health effects of climate-sensitive hazards was established as the Bridging Climate Change and Public Health (BCCPH) stakeholder group. A smaller Strategic Planning Workgroup of key stakeholders from the BCCPH group was then convened over three sessions to work on a strategic plan for the group, which culminated in this document.

Practical Vision
The driving discussion question to identify the Strategic Planning Workgroup’s practical vision was, “What do we want to see in place in the next 3-5 years as a result of our actions?” The goal of this question was to help the group develop concrete outcomes that the BCCPH workgroup would like to achieve through activities included in the strategic plan. The following goals were identified:
 A healthy community infrastructure design
 Reframed messaging for multiple stakeholder needs
 A coordinated multi-scale education effort
 Improved health strategies and outcomes
 A diverse network of partnerships for climate change adaptation and mitigation planning and development
 New funding opportunities
 Policy and research strategies, and private sector engagement.

Underlying Contradictions
The driving discussion question to identify underlying contradictions was, “What is blocking us from moving towards our practical vision?” The following challenges were identified:
 People act out of self-interest vs. common good
 Siloed effects lead to poor coordination
 Political partisanship delays unified action
 Conflicting information leads to biases
 Culture and convenience impacts action
 Vulnerable populations not represented, and normalization of climate change related negative effects

Strategic Directions
During the BCCPH Strategic Planning Workgroup meetings, participants identified five strategic directions for addressing environmental concerns affecting the health and well-being of the community. These strategic directions are in agreement with the climate and health adaptation strategies outlined in the Arizona Climate and Health Adaptation Plan. The strategic directions for Maricopa County are:
 Fostering Environmental Action for a Healthier Community
 Coordinating Research and Collaborative Efforts to Catalyze Change
 Developing a Strategic and Targeted Communication Plan
 Promoting Community Awareness and Public Education about Climate and Health
 Celebrating Success and Champions

Contributors

Created

Date Created
2018

Cooler Phoenix Research Symposium 2017

Description

ASU faculty and students share research at Phoenix City Hall regarding urban heat, including causes, consequences, and potential solutions.

The video is accessible here.

Contributors

Agent
  • ASU (Contributor)

Created

Date Created
2017-09-29

Multiple Trigger Points for Quantifying Heat-Health Impacts: New Evidence from a Hot Climate

Description

Background: Extreme heat is a public health challenge. The scarcity of directly comparable studies on the association of heat with morbidity and mortality and the inconsistent identification of threshold temperatures for severe impacts hampers the development of comprehensive strategies aimed

Background: Extreme heat is a public health challenge. The scarcity of directly comparable studies on the association of heat with morbidity and mortality and the inconsistent identification of threshold temperatures for severe impacts hampers the development of comprehensive strategies aimed at reducing adverse heat-health events.

Objectives: This quantitative study was designed to link temperature with mortality and morbidity events in Maricopa County, Arizona, USA, with a focus on the summer season.

Methods: Using Poisson regression models that controlled for temporal confounders, we assessed daily temperature–health associations for a suite of mortality and morbidity events, diagnoses, and temperature metrics. Minimum risk temperatures, increasing risk temperatures, and excess risk temperatures were statistically identified to represent different “trigger points” at which heat-health intervention measures might be activated.

Results: We found significant and consistent associations of high environmental temperature with all-cause mortality, cardiovascular mortality, heat-related mortality, and mortality resulting from conditions that are consequences of heat and dehydration. Hospitalizations and emergency department visits due to heat-related conditions and conditions associated with consequences of heat and dehydration were also strongly associated with high temperatures, and there were several times more of those events than there were deaths. For each temperature metric, we observed large contrasts in trigger points (up to 22°C) across multiple health events and diagnoses.

Conclusion: Consideration of multiple health events and diagnoses together with a comprehensive approach to identifying threshold temperatures revealed large differences in trigger points for possible interventions related to heat. Providing an array of heat trigger points applicable for different end-users may improve the public health response to a problem that is projected to worsen in the coming decades.

Contributors

Agent

Created

Date Created
2016-02-01

An Alternative Explanation of the Semiarid Urban Area “Oasis Effect”

Description

This research evaluates the climatic summertime representation of the diurnal cycle of near-surface temperature using the Weather Research and Forecasting System (WRF) over the rapidly urbanizing and water-vulnerable Phoenix metropolitan area. A suite of monthly, high-resolution (2 km grid spacing)

This research evaluates the climatic summertime representation of the diurnal cycle of near-surface temperature using the Weather Research and Forecasting System (WRF) over the rapidly urbanizing and water-vulnerable Phoenix metropolitan area. A suite of monthly, high-resolution (2 km grid spacing) simulations are conducted during the month of July with both a contemporary landscape and a hypothetical presettlement scenario. WRF demonstrates excellent agreement in the representation of the daily to monthly diurnal cycle of near-surface temperatures, including the accurate simulation of maximum daytime temperature timing. Thermal sensitivity to anthropogenic land use and land cover change (LULCC), assessed via replacement of the modern-day landscape with natural shrubland, is small on the regional scale. The WRF-simulated characterization of the diurnal cycle, supported by previous observational analyses, illustrates two distinct and opposing impacts on the urbanized diurnal cycle of the Phoenix metro area, with evening and nighttime warming partially offset by daytime cooling. The simulated nighttime urban heat island (UHI) over this semiarid urban complex is explained by well-known mechanisms (slow release of heat from within the urban fabric stored during daytime and increased emission of longwave radiation from the urban canopy toward the surface). During daylight hours, the limited vegetation and dry semidesert region surrounding metro Phoenix warms at greater rates than the urban complex. Although prior work has suggested that daytime temperatures are lower within the urban complex owing to the addition of residential and agricultural irrigation (i.e., “oasis effect”) we show that modification of Phoenix's surrounding environment to a biome more representative of temperate regions eliminates the daytime urban cooling. Our results indicate that surrounding environmental conditions, including land cover and availability of soil moisture, play a principal role in establishing the nature and evolution of the diurnal cycle of near-surface temperature for the greater Phoenix, Arizona, metropolitan area relative to its rural and undeveloped counterpart.

Contributors

Agent

Created

Date Created
2011-12-11

Challenges Associated with Projecting Urbanization-Induced Heat-Related Mortality

Description

Maricopa County, Arizona, anchor to the fastest growing megapolitan area in the United States, is located in a hot desert climate where extreme temperatures are associated with elevated risk of mortality. Continued urbanization in the region will impact atmospheric temperatures

Maricopa County, Arizona, anchor to the fastest growing megapolitan area in the United States, is located in a hot desert climate where extreme temperatures are associated with elevated risk of mortality. Continued urbanization in the region will impact atmospheric temperatures and, as a result, potentially affect human health. We aimed to quantify the number of excess deaths attributable to heat in Maricopa County based on three future urbanization and adaptation scenarios and multiple exposure variables.

Two scenarios (low and high growth projections) represent the maximum possible uncertainty range associated with urbanization in central Arizona, and a third represents the adaptation of high-albedo cool roof technology. Using a Poisson regression model, we related temperature to mortality using data spanning 1983–2007. Regional climate model simulations based on 2050-projected urbanization scenarios for Maricopa County generated distributions of temperature change, and from these predicted changes future excess heat-related mortality was estimated. Subject to urbanization scenario and exposure variable utilized, projections of heat-related mortality ranged from a decrease of 46 deaths per year (− 95%) to an increase of 339 deaths per year (+ 359%).

Projections based on minimum temperature showed the greatest increase for all expansion and adaptation scenarios and were substantially higher than those for daily mean temperature. Projections based on maximum temperature were largely associated with declining mortality. Low-growth and adaptation scenarios led to the smallest increase in predicted heat-related mortality based on mean temperature projections. Use of only one exposure variable to project future heat-related deaths may therefore be misrepresentative in terms of direction of change and magnitude of effects. Because urbanization-induced impacts can vary across the diurnal cycle, projections of heat-related health outcomes that do not consider place-based, time-varying urban heat island effects are neglecting essential elements for policy relevant decision-making.

Contributors

Created

Date Created
2014-04-28

Transit Planning and Climate Change: Reducing Rider’s Vulnerability to Heat

Description

Public transit systems have been identified as a critical component to reducing energy use and greenhouse gas emissions associated with the transportation sector to mitigate future climate change impacts. A unique aspect of public transit is its use almost always

Public transit systems have been identified as a critical component to reducing energy use and greenhouse gas emissions associated with the transportation sector to mitigate future climate change impacts. A unique aspect of public transit is its use almost always necessitates environmental exposure and the design of these systems directly influences rider exposure via rider ingress, egress, and waiting. There is a tension between policies and programs which promote transit use to combat climate change and the potential impact an uncertain climate future may have on transit riders.

In the American Southwest, extreme heat events, a known public health threat, are projected to increase between 150 and 840% over the next decade, and may be a health hazard for transit riders. There are opportunities to incorporate rider health risks in the overall planning process and develop alternative transit schedules during extreme heat events to minimize these risks. Using Los Angeles Metro as a case studies, we show that existing transit vehicles can be reallocated across the system to significantly reduce exposure for riders who are more vulnerable to heat while maintaining a minimum level of service across the system. As cities continue to invest in public transit it is critical for them to understand transit use as an exposure pathway for riders and to develop strategies to mitigate potential health risks.

Contributors

Agent

Created

Date Created
2017-10-24

Environmental Research Letters Connecting People and Place: A New Framework for Reducing Urban Vulnerability to Extreme Heat

Description

Climate change is predicted to increase the intensity and negative impacts of urban heat events, prompting the need to develop preparedness and adaptation strategies that reduce societal vulnerability to extreme heat. Analysis of societal vulnerability to extreme heat events requires

Climate change is predicted to increase the intensity and negative impacts of urban heat events, prompting the need to develop preparedness and adaptation strategies that reduce societal vulnerability to extreme heat. Analysis of societal vulnerability to extreme heat events requires an interdisciplinary approach that includes information about weather and climate, the natural and built environment, social processes and characteristics, interactions with stakeholders, and an assessment of community vulnerability at a local level. In this letter, we explore the relationships between people and places, in the context of urban heat stress, and present a new research framework for a multi-faceted, top-down and bottom-up analysis of local-level vulnerability to extreme heat. This framework aims to better represent societal vulnerability through the integration of quantitative and qualitative data that go beyond aggregate demographic information. We discuss how different elements of the framework help to focus attention and resources on more targeted health interventions, heat hazard mitigation and climate adaptation strategies.

Contributors

Agent

Created

Date Created
2010-03-26