Matching Items (8)
Filtering by

Clear all filters

137154-Thumbnail Image.png
Description
Many student engagement studies take a holistic view of the student experience at a university setting, which includes factors both inside and outside of the classroom. However, most engagement improvements focus on activities outside of the classroom. Some research regarding improving teaching styles and activities shows an impact on engagement,

Many student engagement studies take a holistic view of the student experience at a university setting, which includes factors both inside and outside of the classroom. However, most engagement improvements focus on activities outside of the classroom. Some research regarding improving teaching styles and activities shows an impact on engagement, but little research has investigated the impact of the built environment on student engagement. This paper explores the definition of student engagement, what environmental variables affect building occupant performance, and specifically addresses how environmental variables can impact student engagement. The authors provide a review of literature discussing these variables as well as propose a method for quantifying the impact of the built environment on students based on results of a preliminary study. Evidence of a relationship between human comfort and student engagement can provide an argument for how thoughtful building designs can improve student success and engineering education. It can further extend to industry settings where green building design can lower operating costs and improve worker satisfaction and productivity.
ContributorsDuggan, Kathleen Rose (Author) / Parrish, Kristen (Thesis director) / Khanna, Vikas (Committee member) / Beckert, Kimberly (Committee member) / Industrial, Systems (Contributor) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor)
Created2014-05
153723-Thumbnail Image.png
Description
Improving the conditions of schools in many parts of the world is gradually acquiring importance. The Green School movement is an integral part of this effort since it aims at improving indoor environmental conditions. This would in turn, enhance student- learning while minimizing adverse environmental impact through energy efficiency of

Improving the conditions of schools in many parts of the world is gradually acquiring importance. The Green School movement is an integral part of this effort since it aims at improving indoor environmental conditions. This would in turn, enhance student- learning while minimizing adverse environmental impact through energy efficiency of comfort-related HVAC and lighting systems. This research, which is a part of a larger research project, aims at evaluating different school building designs in Albania in terms of energy use and indoor thermal comfort, and identify energy efficient options of existing schools. We start by identifying three different climate zones in Albania; Coastal (Durres), Hill/Pre-mountainous (Tirana), mountainous (Korca). Next, two prototypical school building designs are identified from the existing stock. Numerous scenarios are then identified for analysis which consists of combinations of climate zone, building type, building orientation, building upgrade levels, presence of renewable energy systems (solar photovoltaic and solar water heater). The existing building layouts, initially outlined in CAD software and then imported into a detailed building energy software program (eQuest) to perform annual simulations for all scenarios. The research also predicted indoor thermal comfort conditions of the various scenarios on the premise that windows could be opened to provide natural ventilation cooling when appropriate. This study also estimated the energy generated from solar photovoltaic systems and solar water heater systems when placed on the available roof area to determine the extent to which they are able to meet the required electric loads (plug and lights) and building heating loads respectively.

The results showed that there is adequate indoor comfort without the need for mechanical cooling for the three climate zones, and that only heating is needed during the winter months.
ContributorsDalvi, Ambalika Rajendra (Author) / Reddy, Agami (Thesis advisor) / Bryan, Harvey (Committee member) / Addison, Marlin (Committee member) / Arizona State University (Publisher)
Created2015
154644-Thumbnail Image.png
Description
During summer 2014, a study was conducted as part of the Landscape Architecture Foundation Case Study Investigation to analyze features of three sustainably designed landscapes. Each project was located in a southwest desert city: Civic Space Park in Phoenix, AZ, the Pete V. Domenici US Courthouse Sustainable Landscape Retrofit in

During summer 2014, a study was conducted as part of the Landscape Architecture Foundation Case Study Investigation to analyze features of three sustainably designed landscapes. Each project was located in a southwest desert city: Civic Space Park in Phoenix, AZ, the Pete V. Domenici US Courthouse Sustainable Landscape Retrofit in Albuquerque, NM, and George "Doc" Cavalliere Park in Scottsdale, AZ. The principal components of each case study were performance benefits that quantified ongoing ecosystem services. Performance benefits were developed from data provided by the designers and collected by the research team. The functionality of environmental, social, and economic sustainable features was evaluated. In southwest desert cities achieving performance benefits such as microclimate cooling often come at the cost of water conservation. In each of these projects such tradeoffs were balanced by prioritizing the project goals and constraints.

During summer 2015, a study was conducted to characterize effects of tree species and shade structures on outdoor human thermal comfort under hot, arid conditions. Motivating the research was the hypothesis that tree species and shade structures will vary in their capacity to improve thermal comfort due to their respective abilities to attenuate solar radiation. Micrometeorological data was collected in full sun and under shade of six landscape tree species and park ramadas in Phoenix, AZ during pre-monsoon summer afternoons. The six landscape tree species included: Arizona ash (Fraxinus velutina Torr.), Mexican palo verde (Parkinsonia aculeata L.), Aleppo pine (Pinus halepensis Mill.), South American mesquite (Prosopis spp. L.), Texas live oak (Quercus virginiana for. fusiformis Mill.), and Chinese elm (Ulmus parvifolia Jacq.). Results showed that the tree species and ramadas were not similarly effective at improving thermal comfort, represented by physiologically equivalent temperature (PET). The difference between PET in full sun and under shade was greater under Fraxinus and Quercus than under Parkinsonia, Prosopis, and ramadas by 2.9-4.3 °C. Radiation was a significant driver of PET (p<0.0001, R2=0.69) and with the exception of ramadas, lower radiation corresponded with lower PET. Variations observed in this study suggest selecting trees or structures that attenuate the most solar radiation is a potential strategy for optimizing PET.
ContributorsColter, Kaylee (Author) / Martin, Chris (Thesis advisor) / Coseo, Paul (Committee member) / Middel, Ariane (Committee member) / Arizona State University (Publisher)
Created2016
Description

With the increase in the severity of drought conditions in the Southwest region of the U.S. paired with rising temperatures, it is becoming increasingly important to look at the systems used to keep people cool in hot-arid cities like Tempe, Arizona. Outdoor misting systems are often deployed by businesses. These

With the increase in the severity of drought conditions in the Southwest region of the U.S. paired with rising temperatures, it is becoming increasingly important to look at the systems used to keep people cool in hot-arid cities like Tempe, Arizona. Outdoor misting systems are often deployed by businesses. These systems rely on the evaporative cooling effect of water. This study examines the relationship between misting droplet size, water usage, and thermal comfort using low-pressure misting systems, tested within hot and dry conditions representative of the arid U.S. southwest. A model misting system using three nozzle orifice sizes was set up in a controlled heat chamber environment (starting baseline conditions of 40°C air temperature and 15 % relative humidity). Droplet size was measured using water-reactive paper, while water use was determined based on weight-change measurements. These measurements were paired with temperature and humidity measurements observed in several locations around the chamber to allow for a spatial analysis. Thermal comfort is determined based on psychrometric changes (temperature and absolute humidity) within the room. On average, air temperatures decreased between 2 to 4°C depending on nozzle size and sensor location. The 0.4 mm nozzle had a decent spread across the heat chamber and balanced water usage and effectiveness well. Limitations within the study showed ventilation is important for an effective system, corroborating other studies findings and suggesting that adding air circulation could improve evaporation and comfort and thus effectiveness. Finally, visual cues, such as wetted surfaces, can signal businesses to change nozzle sizes and/or make additional modifications to the system area.

ContributorsJohnson, Trevor (Author) / Vanos, Jennifer (Thesis director) / Middel, Ariane (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2023-05
ContributorsJohnson, Trevor (Author) / Vanos, Jennifer (Thesis director) / Middel, Ariane (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2023-05
157605-Thumbnail Image.png
Description

Thermal extremes are responsible for more than 90% of all weather-related deaths in the United States, with heat alone accounting for an annual death toll of 618. With the combination of global warming and urban expansion, cities are becoming hotter and the threat to the well-being of citizens in urban

Thermal extremes are responsible for more than 90% of all weather-related deaths in the United States, with heat alone accounting for an annual death toll of 618. With the combination of global warming and urban expansion, cities are becoming hotter and the threat to the well-being of citizens in urban areas is growing. Because people in modern societies (and in particular, vulnerable groups such as the elderly) spend most of their time inside their home, indoor exposure to heat is the underlying cause in a considerable fraction of heat-related morbidity and mortality. Notably, this can be observed in many US cities despite the high prevalence of mechanical air conditioning in the building stock. Therefore, part of the effort to reducing the overall vulnerability of urban populations to heat needs to be dedicated to understanding indoor exposure, its underlying behavioral and physical mechanisms, health outcomes, and possible mitigation strategies. This dissertation is an effort to advance the knowledge in these areas. The cities of Houston, TX, Phoenix, AZ, and Los Angeles, CA, are used as test beds to assess exposure and vulnerability to indoor heat among people 65 and older. Measurements and validated whole-building simulations were used in conjunction with heat-vulnerability surveys and epidemiological modelling (of collaborators) to (1) understand how building characteristics and practices govern indoor exposure to heat among the elderly; (2) evaluate mechanical air conditioning as a reliable protective factor against indoor exposure to heat; and (3) identify potential impacts from the evolving building stock and a warming urban climate. The results show strong associations between indoor heat exposure and certain health outcomes and highlight the vulnerability of elderly populations to heat despite the prevalence of air conditioning systems. Given the current construction practices and urban warming trends, this vulnerability will continue to grow. Therefore, policies promoting climate adaptive buildings features, as well as better access to reliable and affordable AC are needed. In addition, this research draws attention to the significant potential health consequences of large-scale power outages and proposes the implementation of passive survivability in regulations as one important preventative action.

ContributorsBaniassadi, Amir (Author) / Sailor, David (Thesis advisor) / Bryan, Harvey M (Committee member) / Reddy, Agami (Committee member) / Chester, Mikhail M (Committee member) / Arizona State University (Publisher)
Created2019
131596-Thumbnail Image.png
Description

This study aims to examine the relationship between urban densification and pedestrian thermal comfort at different times of the year, and to understand how this can impact patterns of activity in downtown areas. The focus of the research is on plazas in the urban core of downtown Tempe, given their

This study aims to examine the relationship between urban densification and pedestrian thermal comfort at different times of the year, and to understand how this can impact patterns of activity in downtown areas. The focus of the research is on plazas in the urban core of downtown Tempe, given their importance to the pedestrian landscape. With that in mind, the research question for the study is: how does the microclimate of a densifying urban core affect thermal comfort in plazas at different times of the year? Based on the data, I argue that plazas in downtown Tempe are not maximally predisposed to pedestrian thermal comfort in the summer or the fall. Thus, the proposed intervention to improve thermal comfort in downtown Tempe’s plazas is the implementation of decision support tools focused on education, community engagement, and thoughtful building designs for heat safety.

ContributorsCox, Nicole (Author) / Redman, Charles (Thesis director) / Hondula, David M. (Committee member) / School of Social Transformation (Contributor) / School of Sustainability (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2020-05