Matching Items (2)
Filtering by

Clear all filters

152402-Thumbnail Image.png
Description
This work demonstrated a novel microfluidic device based on direct current (DC) insulator based dielectrophoresis (iDEP) for trapping individual mammalian cells in a microfluidic device. The novel device is also applicable for selective trapping of weakly metastatic mammalian breast cancer cells (MCF-7) from mixtures with mammalian Peripheral Blood Mononuclear Cells

This work demonstrated a novel microfluidic device based on direct current (DC) insulator based dielectrophoresis (iDEP) for trapping individual mammalian cells in a microfluidic device. The novel device is also applicable for selective trapping of weakly metastatic mammalian breast cancer cells (MCF-7) from mixtures with mammalian Peripheral Blood Mononuclear Cells (PBMC) and highly metastatic mammalian breast cancer cells, MDA-MB-231. The advantage of this approach is the ease of integration of iDEP structures in microfliudic channels using soft lithography, the use of DC electric fields, the addressability of the single cell traps for downstream analysis and the straightforward multiplexing for single cell trapping. These microfluidic devices are targeted for capturing of single cells based on their DEP behavior. The numerical simulations point out the trapping regions in which single cell DEP trapping occurs. This work also demonstrates the cell conductivity values of different cell types, calculated using the single-shell model. Low conductivity buffers are used for trapping experiments. These low conductivity buffers help reduce the Joule heating. Viability of the cells in the buffer system was studied in detail with a population size of approximately 100 cells for each study. The work also demonstrates the development of the parallelized single cell trap device with optimized traps. This device is also capable of being coupled detection of target protein using MALDI-MS.
ContributorsBhattacharya, Sanchari (Author) / Ros, Alexandra (Committee member) / Ros, Robert (Committee member) / Buttry, Daniel (Committee member) / Arizona State University (Publisher)
Created2013
157184-Thumbnail Image.png
Description
The large-scale anthropogenic emission of carbon dioxide into the atmosphere leads to many unintended consequences, from rising sea levels to ocean acidification. While a clean energy infrastructure is growing, mid-term strategies that are compatible with the current infrastructure should be developed. Carbon capture and storage in fossil-fuel power plants is

The large-scale anthropogenic emission of carbon dioxide into the atmosphere leads to many unintended consequences, from rising sea levels to ocean acidification. While a clean energy infrastructure is growing, mid-term strategies that are compatible with the current infrastructure should be developed. Carbon capture and storage in fossil-fuel power plants is one way to avoid our current gigaton-scale emission of carbon dioxide into the atmosphere. However, for this to be possible, separation techniques are necessary to remove the nitrogen from air before combustion or from the flue gas after combustion. Metal-organic frameworks (MOFs) are a relatively new class of porous material that show great promise for adsorptive separation processes. Here, potential mechanisms of O2/N2 separation and CO2/N2 separation are explored.

First, a logical categorization of potential adsorptive separation mechanisms in MOFs is outlined by comparing existing data with previously studied materials. Size-selective adsorptive separation is investigated for both gas systems using molecular simulations. A correlation between size-selective equilibrium adsorptive separation capabilities and pore diameter is established in materials with complex pore distributions. A method of generating mobile extra-framework cations which drastically increase adsorptive selectivity toward nitrogen over oxygen via electrostatic interactions is explored through experiments and simulations. Finally, deposition of redox-active ferrocene molecules into systematically generated defects is shown to be an effective method of increasing selectivity towards oxygen.
ContributorsMcIntyre, Sean (Author) / Mu, Bin (Thesis advisor) / Green, Matthew (Committee member) / Lind, Marylaura (Committee member) / Arizona State University (Publisher)
Created2019