Matching Items (5)
Filtering by

Clear all filters

152636-Thumbnail Image.png
Description
Rapid and reliable separation and analysis of proteins require powerful analytical methods. The analysis of proteins becomes especially challenging when only small sample volumes are available, concomitantly with low concentrations of proteins. Time critical situations pose additional challenges. Due to these challenges, conventional macro-scale separation techniques reach their limitations. While

Rapid and reliable separation and analysis of proteins require powerful analytical methods. The analysis of proteins becomes especially challenging when only small sample volumes are available, concomitantly with low concentrations of proteins. Time critical situations pose additional challenges. Due to these challenges, conventional macro-scale separation techniques reach their limitations. While microfluidic devices require only pL-nL sample volumes, they offer several advantages such as speed, efficiency, and high throughput. This work elucidates the capability to manipulate proteins in a rapid and reliable manner with a novel migration technique, namely dielectrophoresis (DEP). Since protein analysis can often be achieved through a combination of orthogonal techniques, adding DEP as a gradient technique to the portfolio of protein manipulation methods can extend and improve combinatorial approaches. To this aim, microfluidic devices tailored with integrated insulating obstacles were fabricated to create inhomogeneous electric fields evoking insulator-based DEP (iDEP). A main focus of this work was the development of pre-concentration devices where topological micropost arrays are fabricated using standard photo- and soft lithographic techniques. With these devices, positive DEP-driven streaming of proteins was demonstrated for the first time using immunoglobulin G (IgG) and bovine serum albumin. Experimentally observed iDEP concentrations of both proteins were in excellent agreement with positive DEP concentration profiles obtained by numerical simulations. Moreover, the micropost iDEP devices were improved by introducing nano-constrictions with focused ion beam milling with which numerical simulations suggested enhancement of the DEP effect, leading to a 12-fold increase in concentration of IgG. Additionally, concentration of β-galactosidase was observed, which seems to occur due to an interplay of negative DEP, electroosmosis, electrokinesis, diffusion, and ion concentration polarization. A detailed study was performed to investigate factors influencing protein DEP under DC conditions, including electroosmosis, electrophoresis, and Joule heating. Specifically, temperature rise within the iDEP device due to Joule heating was measured experimentally with spatial and temporal resolution by employing the thermosensitive dye Rhodamine B. Unlike DNA and cells, protein DEP behavior is not well understood to date. Therefore, this detailed study of protein DEP provides novel information to eventually optimize this protein migration method for pre-concentration, separation, and fractionation.
ContributorsNakano, Asuka (Author) / Ros, Alexandra (Thesis advisor) / Hayes, Mark (Committee member) / Levitus, Marcia (Committee member) / Arizona State University (Publisher)
Created2014
154177-Thumbnail Image.png
Description
Efficient separation techniques for organelles and bacteria in the micron- and sub-micron range are required for various analytical challenges. Mitochondria have a wide size range resulting from the sub-populations, some of which may be associated with diseases or aging. However, traditional methods can often not resolve within-species size variations. Strategies

Efficient separation techniques for organelles and bacteria in the micron- and sub-micron range are required for various analytical challenges. Mitochondria have a wide size range resulting from the sub-populations, some of which may be associated with diseases or aging. However, traditional methods can often not resolve within-species size variations. Strategies to separate mitochondrial sub-populations by size are thus needed to study the importance of this organelle in cellular functions. Additionally, challenges also exist in distinguishing the sub-populations of bio-species which differ in the surface charge while possessing similar size, such as Salmonella typhimurium (Salmonella). The surface charge of Salmonella wild-type is altered upon environmental stimulations, influencing the bacterial survival and virulence within the host tissue. Therefore, it is important to explore methods to identify the sub-populations of Salmonella.

This work exploits insulator-based dielectrophoresis (iDEP) for the manipulation of mitochondria and Salmonella. The iDEP migration and trapping of mitochondria were investigated under both DC and low-frequency AC conditions, establishing that mitochondria exhibit negative DEP. Also, the first realization of size-based iDEP sorting experiments of mitochondria were demonstrated. As for Salmonella, the preliminary study revealed positive DEP behavior. Distinct trapping potential thresholds were found for the sub-populations with different surface charges.

Further, DEP was integrated with a non-intuitive migration mechanism termed absolute negative mobility (ANM), inducing a deterministic trapping component which allows the directed transport of µm- and sub-µm sized (bio)particles in microfluidic devices with a nonlinear post array under the periodic action of electrokinetic and dielectrophoretic forces. Regimes were revealed both numerically and experimentally in which larger particles migrate against the average applied force, whereas smaller particles show normal response. Moreover, this deterministic ANM (dANM) was characterized with polystyrene beads demonstrating improved migration speed at least two orders of magnitude higher compared to previous ANM systems with similar sized colloids. In addition, dANM was induced for mitochondria with an AC-overlaid waveform representing the first demonstration of ANM migration with biological species. Thus, it is envisioned that the efficient size selectivity of this novel migration mechanism can be employed in nanotechnology, organelle sub-population studies or fractionating protein nanocrystals.
ContributorsLuo, Jinghui (Author) / Ros, Alexandra (Thesis advisor) / Hayes, Mark (Committee member) / Borges, Chad (Committee member) / Arizona State University (Publisher)
Created2015
157184-Thumbnail Image.png
Description
The large-scale anthropogenic emission of carbon dioxide into the atmosphere leads to many unintended consequences, from rising sea levels to ocean acidification. While a clean energy infrastructure is growing, mid-term strategies that are compatible with the current infrastructure should be developed. Carbon capture and storage in fossil-fuel power plants is

The large-scale anthropogenic emission of carbon dioxide into the atmosphere leads to many unintended consequences, from rising sea levels to ocean acidification. While a clean energy infrastructure is growing, mid-term strategies that are compatible with the current infrastructure should be developed. Carbon capture and storage in fossil-fuel power plants is one way to avoid our current gigaton-scale emission of carbon dioxide into the atmosphere. However, for this to be possible, separation techniques are necessary to remove the nitrogen from air before combustion or from the flue gas after combustion. Metal-organic frameworks (MOFs) are a relatively new class of porous material that show great promise for adsorptive separation processes. Here, potential mechanisms of O2/N2 separation and CO2/N2 separation are explored.

First, a logical categorization of potential adsorptive separation mechanisms in MOFs is outlined by comparing existing data with previously studied materials. Size-selective adsorptive separation is investigated for both gas systems using molecular simulations. A correlation between size-selective equilibrium adsorptive separation capabilities and pore diameter is established in materials with complex pore distributions. A method of generating mobile extra-framework cations which drastically increase adsorptive selectivity toward nitrogen over oxygen via electrostatic interactions is explored through experiments and simulations. Finally, deposition of redox-active ferrocene molecules into systematically generated defects is shown to be an effective method of increasing selectivity towards oxygen.
ContributorsMcIntyre, Sean (Author) / Mu, Bin (Thesis advisor) / Green, Matthew (Committee member) / Lind, Marylaura (Committee member) / Arizona State University (Publisher)
Created2019
153636-Thumbnail Image.png
Description
Particulate trace metals can enter the atmosphere as mineral dust, sea spray, anthropogenic emissions, biomass burning, etc. Once in the atmosphere they can undergo a variety of transformations including aqueous phase (cloud) processing, photochemical reactions, interact with gases, and ultimately deposit. Metals in aerosols are of particular interest because

Particulate trace metals can enter the atmosphere as mineral dust, sea spray, anthropogenic emissions, biomass burning, etc. Once in the atmosphere they can undergo a variety of transformations including aqueous phase (cloud) processing, photochemical reactions, interact with gases, and ultimately deposit. Metals in aerosols are of particular interest because of their natural and anthropogenic sources as well as their effects on local (human health) and global (climate change) scales. This work investigates the metal component of atmospheric particles and how it changes during physical and chemical processes at local, regional and global scales, through laboratory and field studies. In the first part of this work, the impact of local dust storms (haboobs) on ambient metal concentrations and speciation is investigated in Tempe, AZ. It was found that metal concentrations substantially increase (> 10 times) during these events before returning to pre-storm levels. In a second part of this work, the impact of fog processing on metal concentrations, solubility and speciation is examined through field observations in California’s Central Valley. The observations show that fog processing has a profound effect on local metal concentrations but the trends are not consistent between sites or even between events, indicating complex processes that need further investigation. For example, fogs have an effect on scavenging and solubility of iron in Davis, while in Fresno soluble iron content is indicative of the source of the aerosol. The last part of the thesis investigates the role of particle size on the solubilization of iron from mineral dust aerosols during global atmospheric transport through laboratory experiments. The experiments showed that mineralogy and pH have the greatest effect on iron solubility in atmospheric aerosols in general while particle size and photochemistry impact mainly the solubility of iron oxides.
ContributorsMarcotte, Aurelie Rose (Author) / Herckes, Pierre (Thesis advisor) / Anbar, Ariel (Thesis advisor) / Fraser, Matthew (Committee member) / Hayes, Mark (Committee member) / Arizona State University (Publisher)
Created2015
154903-Thumbnail Image.png
Description
Dust storms known as 'haboobs' occur in the City of Tempe, AZ during the North American monsoon season. A haboob classification method based on meteorological and air quality measurements is described. There were from 3 to 20 haboob events per year over the period from 2005 to 2014. The calculated

Dust storms known as 'haboobs' occur in the City of Tempe, AZ during the North American monsoon season. A haboob classification method based on meteorological and air quality measurements is described. There were from 3 to 20 haboob events per year over the period from 2005 to 2014. The calculated annual TSP (total suspended particulate) dry deposition during haboobs is estimated to contribute 74% of the total particulate mass deposited in Tempe, AZ.

Dry deposition is compared with the aqueous chemistry of Tempe Town Lake. Water management and other factors may have a stronger impact on Tempe Town Lake chemistry than haboob dry-deposition. Haboobs alter the Polycyclic Aromatic Hydrocarbon (PAH) concentrations and distributions in Tempe, AZ. PAH isomer ratios suggest PM2.5 (particulate matter with aerodynamic diameters less than or equal to 2.5 μm) sources consistent with approximate thunderstorm outflow paths.

The importance of the atmospheric aqueous phase, fogs and clouds, for the processing and removal of PAHs is not well known. A multiphase model was developed to determine the fate and lifetime of PAHs in fogs and clouds. The model employed literature values that describe the partitioning between three phases (aqueous, liquid organic, and gas), in situ PAH measurements, and experimental and estimated (photo)oxidation rates. At 25 °C, PAHs with two, three and four rings were predicted to be primarily gas phase (fraction in the gas phase xg > 90 %) while five- and six-ring PAHs partitioned significantly into droplets (xg < 60 %) with aqueous phase fractions of 1 to 6 % and liquid organic phase fractions of 31 to 91 %. The predicted atmospheric lifetimes of PAHs in the presence of fog or cloud droplets (< 5 hours) were significantly shorter than literature predictions of PAH wet and dry deposition lifetimes (1 to 14 days and 5 to 15 months respectively) and shorter than or equal to predicted PAH gas phase / particle phase atmospheric lifetimes (1 to 300 hours). The aqueous phase cannot be neglected as a PAH sink due to the large aqueous volume (vs. organic volume) and the relatively fast aqueous reactions.
ContributorsEagar, Jershon (Author) / Herckes, Pierre (Thesis advisor) / Hayes, Mark (Committee member) / Shock, Everett (Committee member) / Arizona State University (Publisher)
Created2016