Matching Items (22)

135861-Thumbnail Image.png

The Focusing of Proteins Using Dielectrophoresis in an Improved Microfluidic Device

Description

Dielectrophoresis is a separations strategy that has the potential to separate small amounts of different proteins from each other. The forces at play in the channel used for dielectrophoresis are electroosmotic flow (EOF), electrophoresis (EP), and dielectrophoresis (DEP). EOF is

Dielectrophoresis is a separations strategy that has the potential to separate small amounts of different proteins from each other. The forces at play in the channel used for dielectrophoresis are electroosmotic flow (EOF), electrophoresis (EP), and dielectrophoresis (DEP). EOF is the force exerted on liquid from an applied potential (1). EP is the force exerted on charged particles in a uniform electric field (2). DEP is the force exerted on particles (charged and uncharged) in a non-uniform electric field (3). This experiment was focused on the testing of a new microfluidic device to see if it could improve the focusing of proteins in dielectrophoresis. It was predicted that the addition of a salt bridge would improve focusing by preventing the ions created by the electrolysis of water around the electrodes from interacting with the proteins and causing aggregation, among other problems. Control trials using the old device showed that electrolysis was likely occurring and was the causal agent for poor outcomes. After applying the electric potential for some time a pH front traveled through the channel causing aggregation of proteins and the current in the channel decreased rapidly, even while the voltage was held constant. The resistance in the channels of the control trials also slightly decreased over time, until the pH shift occurred, at which time it increased rapidly. Experimental trials with a new device that included salt bridges eliminated this pH front and had a roughly linear increase of current in the channel with the voltage applied. This device can now be used in future research with protein dielectrophoresis, including in the potential differentiation of different proteins. References: 1) Electroosmosis. Oxford Dictionary of Biochemistry and Molecular Biology. 2. Oxford University Press: Oxford, England. 2006. 2) Electrophoresis. Oxford Dictionary of Biochemistry and Molecular Biology. 2. Oxford University Press: Oxford, England. 2006. 3) Dielectrophoresis. Oxford Dictionary of Biochemistry and Molecular Biology. 2. Oxford University Press: Oxford, England. 2006.

Contributors

Agent

Created

Date Created
2016-05

136421-Thumbnail Image.png

Differentiation of Staphylococcus epidermidis strains using DC gradient insulator dielectrophoresis

Description

Bacteria play a vital role in the world ecosystem, more importantly human health and disease. The capability to differentiate and identify these microorganisms serves as an important research objective. In past years, separations-based approaches have served as a way to

Bacteria play a vital role in the world ecosystem, more importantly human health and disease. The capability to differentiate and identify these microorganisms serves as an important research objective. In past years, separations-based approaches have served as a way to observe and identify bacteria based on their characteristics. Gradient insulator dielectrophoresis (g-iDEP) provides benefits in identifying serotypes of a single species with precise separation. Separation of Staphylococcus epidermidis in a single g-iDEP microchannel is conducted exploiting their electrophoretic and electrokinetic properties. The cells were captured and concentrated at gates with interacting forces within the microchannel to clearly distinguish between the two strains. These results provide support for g-iDEP serving as a separating method and, furthermore, future clinical applications.

Contributors

Agent

Created

Date Created
2015-05

131586-Thumbnail Image.png

Biophysical differentiation of MRSA and MSSA using Dielectrophoresis

Description

Dielectrophoresis has been shown in the recent past to successfully separate bioparticles of very subtle differences at high resolutions using biophysical forces. In this study, we test the biophysical differences of methicillin resistant and susceptible Staph. aureus that are known

Dielectrophoresis has been shown in the recent past to successfully separate bioparticles of very subtle differences at high resolutions using biophysical forces. In this study, we test the biophysical differences of methicillin resistant and susceptible Staph. aureus that are known to have very similar genomes by using a modified gradient insulator-based dielectrophoresis device (g-iDEP). MRSA is commonly seen in hospitals and is the leading killer of infectious bacteria, claiming the lives of around 10,000 people annually. G-iDEP improves many capabilities within the DEP field including sample size, cost, ease of use and analysis time. This is a promising foundation to creating a more clinically optimized diagnostic tool for both separation and detection of bacteria in the healthcare field. The capture on-set potential for fluorescently tagged MRSA (801 ± 34V) is higher than fluorescently tagged MSSA (610 ± 32V), resulting in a higher electrokinetic to dielectrophoretic mobility ratio for MRSA. Since the strains have proven to be genomically similar through sequencing, it is reasonable to attribute this significant biophysical difference to the added PBP2a enzyme in MRSA. These results are consistent with other bacterial studied within in this device and have proven to be reproducible.

Contributors

Agent

Created

Date Created
2020-05

137416-Thumbnail Image.png

Temperature Measurement In Microfluidic Devics

Description

Microfluidics is an expanding research area for analytical chemistry and the biomedical industry. Microfludic devices have been used for protein and DNA sorting, early detection techniques for cancer and other disease, and a variety of other analytical techniques. Dielectrophoresis is

Microfluidics is an expanding research area for analytical chemistry and the biomedical industry. Microfludic devices have been used for protein and DNA sorting, early detection techniques for cancer and other disease, and a variety of other analytical techniques. Dielectrophoresis is a technique is often used to control particles within microfluidic devices however the non-uniform electric field can affect the interior of the device. In order to expand the applications of microfluidic devices and to make it easier to work with techniques such as dielectrophoresis, it is essential to understand as much as possible about how the internal environment of the device will affect the sample. A significant part of this is being able to non-invasively determine the temperature inside the microfluidic device in the both the channel and reservoir regions. Several other research group have successfully used temperature sensitive dyes and fluorescence to measure the temperature within microfluidic devices so research began with understanding their techniques and trying to optimize them for the chosen microfluidic channel. Results from calibration and reservoir tests show that there is a linear relationship between the temperature of the channel and the ratio between the dyes Rhodamine 110 and Rhodamine B. Results within the channel showed that the calibration may be difficult to apply directly as absorption from the PDMS continues to be a problem but several coatings can be used to improve the results.

Contributors

Agent

Created

Date Created
2013-12

Insulator-based dielectrophoretic manipulation of DNA in a microfluidic device

Description

DNA and DNA nanoassemblies such as DNA origamis have large potential in biosensing, drug delivery, nanoelectronic circuits, and biological computing requiring suitable methods for migration and precise positioning. Insulator-based dielectrophoresis (iDEP) provides an efficient and matrix-free approach for manipulation of

DNA and DNA nanoassemblies such as DNA origamis have large potential in biosensing, drug delivery, nanoelectronic circuits, and biological computing requiring suitable methods for migration and precise positioning. Insulator-based dielectrophoresis (iDEP) provides an efficient and matrix-free approach for manipulation of micro-and nanometer-sized objects. In order to exploit iDEP for naturally formed DNA and DNA nanoassemblies, a detailed understanding of the underlying polarization and dielectrophoretic migration is essential. The shape and the counterion distribution are considered two essential factors in the polarization mechanism. Here, the dielectrophoretic behavior of 6-helix bundle (6HxB) and triangle DNA origamis with identical sequences but substantial topological differences was explored. The polarizability models were discussed for the two species according to their structural difference. The experimental observations reveal distinct iDEP trapping behavior in low frequency AC electric fields in addition to numerical simulations showing a considerable contribution of the electrophoretic transport of the DNA origami species in the DEP trapping regions. Furthermore, the polarizabilities of the two species were determined by measuring the migration times through a potential landscape exhibiting dielectrophoretic barriers. The resulting migration times correlate to the depth of the dielectrophoretic potential barrier and the escape characteristics of the DNA origamis according to an adapted Kramer’s rate model. The orientations of both species in the escape process were studied. Finally, to study the counterion distribution around the DNA molecules, both λ-DNA and 6HxB DNA were used in a phosphate buffer containing magnesium, revealing distinctive negative dielectrophoretic trapping behavior as opposed to positive trapping in a sodium/potassium phosphate buffer system.

Contributors

Agent

Created

Date Created
2015

150257-Thumbnail Image.png

New developments in isoelectric focusing and dielectrophoresis for bioanalysis

Description

Bioanalytes such as protein, cells, and viruses provide vital information but are inherently challenging to measure with selective and sensitive detection. Gradient separation technologies can provide solutions to these challenges by enabling the selective isolation and pre-concentration of bioanalytes for

Bioanalytes such as protein, cells, and viruses provide vital information but are inherently challenging to measure with selective and sensitive detection. Gradient separation technologies can provide solutions to these challenges by enabling the selective isolation and pre-concentration of bioanalytes for improved detection and monitoring. Some fundamental aspects of two of these techniques, isoelectric focusing and dielectrophoresis, are examined and novel developments are presented. A reproducible and automatable method for coupling capillary isoelectric focusing (cIEF) and matrix assisted laser desorption/ionization mass spectrometry (MALDI-MS) based on syringe pump mobilization is found. Results show high resolution is maintained during mobilization and &beta-lactoglobulin; protein isoforms differing by two amino acids are resolved. Subsequently, the instrumental advantages of this approach are utilized to clarify the microheterogeneity of serum amyloid P component. Comprehensive, quantitative results support a relatively uniform glycoprotein model, contrary to inconsistent and equivocal observations in several gel isoelectric focusing studies. Fundamental studies of MALDI-MS on novel superhydrophobic substrates yield unique insights towards an optimal interface between cIEF and MALDI-MS. Finally, the fundamentals of isoelectric focusing in an open drop are explored. Findings suggest this could be a robust sample preparation technique for droplet-based microfluidic systems. Fundamental advancements in dielectrophoresis are also presented. Microfluidic channels for dielectrophoretic mobility characterization are designed which enable particle standardization, new insights to be deduced, and future devices to be intelligently designed. Dielectrophoretic mobilities are obtained for 1 µm polystyrene particles and red blood cells under select conditions. Employing velocimetry techniques allows models of particle motion to be improved which in turn improves the experimental methodology. Together this work contributes a quantitative framework which improves dielectrophoretic particle separation and analysis.

Contributors

Agent

Created

Date Created
2011

149926-Thumbnail Image.png

New methods for biological and environmental protein fingerprinting: from traditional techniques to new technology

Description

A new challenge on the horizon is to utilize the large amounts of protein found in the atmosphere to identify different organisms from which the protein originated. Included here is work investigating the presence of identifiable patterns of different proteins

A new challenge on the horizon is to utilize the large amounts of protein found in the atmosphere to identify different organisms from which the protein originated. Included here is work investigating the presence of identifiable patterns of different proteins collected from the air and biological samples for the purposes of remote identification. Protein patterns were generated using high performance liquid chromatography (HPLC). Patterns created could identify high-traffic and low-traffic indoor spaces. Samples were collected from the air using air pumps to draw air through a filter paper trapping particulates, including large amounts of shed protein matter. In complimentary research aerosolized biological samples were collected from various ecosystems throughout Ecuador to explore the relationship between environmental setting and aerosolized protein concentrations. In order to further enhance protein separation and produce more detailed patterns for the identification of individual organisms of interest; a novel separation device was constructed and characterized. The separation device incorporates a longitudinal gradient as well as insulating dielectrophoretic features within a single channel. This design allows for the production of stronger local field gradients along a global gradient allowing particles to enter, initially transported through the channel by electrophoresis and electroosmosis, and to be isolated according to their characteristic physical properties, including charge, polarizability, deformability, surface charge mobility, dielectric features, and local capacitance. Thus, different types of particles are simultaneously separated at different points along the channel distance given small variations of properties. The device has shown the ability to separate analytes over a large dynamic range of size, from 20 nm to 1 μm, roughly the size of proteins to the size of cells. In the study of different sized sulfate capped polystyrene particles were shown to be selectively captured as well as concentrating particles from 103 to 106 times. Qualitative capture and manipulation of β-amyloid fibrils were also shown. The results demonstrate the selective focusing ability of the technique; and it may form the foundation for a versatile tool for separating complex mixtures. Combined this work shows promise for future identification of individual organisms from aerosolized protein as well as for applications in biomedical research.

Contributors

Agent

Created

Date Created
2011

152636-Thumbnail Image.png

Protein dielectrophoresis using insulator-based microfluidic platforms

Description

Rapid and reliable separation and analysis of proteins require powerful analytical methods. The analysis of proteins becomes especially challenging when only small sample volumes are available, concomitantly with low concentrations of proteins. Time critical situations pose additional challenges. Due to

Rapid and reliable separation and analysis of proteins require powerful analytical methods. The analysis of proteins becomes especially challenging when only small sample volumes are available, concomitantly with low concentrations of proteins. Time critical situations pose additional challenges. Due to these challenges, conventional macro-scale separation techniques reach their limitations. While microfluidic devices require only pL-nL sample volumes, they offer several advantages such as speed, efficiency, and high throughput. This work elucidates the capability to manipulate proteins in a rapid and reliable manner with a novel migration technique, namely dielectrophoresis (DEP). Since protein analysis can often be achieved through a combination of orthogonal techniques, adding DEP as a gradient technique to the portfolio of protein manipulation methods can extend and improve combinatorial approaches. To this aim, microfluidic devices tailored with integrated insulating obstacles were fabricated to create inhomogeneous electric fields evoking insulator-based DEP (iDEP). A main focus of this work was the development of pre-concentration devices where topological micropost arrays are fabricated using standard photo- and soft lithographic techniques. With these devices, positive DEP-driven streaming of proteins was demonstrated for the first time using immunoglobulin G (IgG) and bovine serum albumin. Experimentally observed iDEP concentrations of both proteins were in excellent agreement with positive DEP concentration profiles obtained by numerical simulations. Moreover, the micropost iDEP devices were improved by introducing nano-constrictions with focused ion beam milling with which numerical simulations suggested enhancement of the DEP effect, leading to a 12-fold increase in concentration of IgG. Additionally, concentration of β-galactosidase was observed, which seems to occur due to an interplay of negative DEP, electroosmosis, electrokinesis, diffusion, and ion concentration polarization. A detailed study was performed to investigate factors influencing protein DEP under DC conditions, including electroosmosis, electrophoresis, and Joule heating. Specifically, temperature rise within the iDEP device due to Joule heating was measured experimentally with spatial and temporal resolution by employing the thermosensitive dye Rhodamine B. Unlike DNA and cells, protein DEP behavior is not well understood to date. Therefore, this detailed study of protein DEP provides novel information to eventually optimize this protein migration method for pre-concentration, separation, and fractionation.

Contributors

Agent

Created

Date Created
2014

152402-Thumbnail Image.png

Insulator based dielectrophoretic trapping of single mammalian cells

Description

This work demonstrated a novel microfluidic device based on direct current (DC) insulator based dielectrophoresis (iDEP) for trapping individual mammalian cells in a microfluidic device. The novel device is also applicable for selective trapping of weakly metastatic mammalian breast cancer

This work demonstrated a novel microfluidic device based on direct current (DC) insulator based dielectrophoresis (iDEP) for trapping individual mammalian cells in a microfluidic device. The novel device is also applicable for selective trapping of weakly metastatic mammalian breast cancer cells (MCF-7) from mixtures with mammalian Peripheral Blood Mononuclear Cells (PBMC) and highly metastatic mammalian breast cancer cells, MDA-MB-231. The advantage of this approach is the ease of integration of iDEP structures in microfliudic channels using soft lithography, the use of DC electric fields, the addressability of the single cell traps for downstream analysis and the straightforward multiplexing for single cell trapping. These microfluidic devices are targeted for capturing of single cells based on their DEP behavior. The numerical simulations point out the trapping regions in which single cell DEP trapping occurs. This work also demonstrates the cell conductivity values of different cell types, calculated using the single-shell model. Low conductivity buffers are used for trapping experiments. These low conductivity buffers help reduce the Joule heating. Viability of the cells in the buffer system was studied in detail with a population size of approximately 100 cells for each study. The work also demonstrates the development of the parallelized single cell trap device with optimized traps. This device is also capable of being coupled detection of target protein using MALDI-MS.

Contributors

Agent

Created

Date Created
2013

153628-Thumbnail Image.png

Development of a new approach to biophysical separations using dielectrophoresis

Description

Biological fluids contain information-rich mixtures of biochemicals and particles such as cells, proteins, and viruses. Selective and sensitive analysis of these fluids can enable clinicians to accurately diagnose a wide range of pathologies. Fluid samples such as these present an

Biological fluids contain information-rich mixtures of biochemicals and particles such as cells, proteins, and viruses. Selective and sensitive analysis of these fluids can enable clinicians to accurately diagnose a wide range of pathologies. Fluid samples such as these present an intriguing challenge to researchers; they are packed with potentially vital information, but notoriously difficult to analyze. Rapid and inexpensive analysis of blood and other bodily fluids is a topic gaining substantial attention in both science and medicine. Current limitations to many analyses include long culture times, expensive reagents, and the need for specialized laboratory facilities and personnel. Improving these tests and overcoming their limitations would allow faster and more widespread testing for disease and pathogens, potentially providing a significant advantage for healthcare in many settings.

Both gradient separation techniques and dielectrophoresis can solve some of the difficulties presented by complex biological samples, thanks to selective capture, isolation, and concentration of analytes. By merging dielectrophoresis with a gradient separation-based approach, gradient insulator dielectrophoresis (g-iDEP) promises benefits in the form of rapid and specific separation of extremely similar bioparticles. High-resolution capture can be achieved by exploiting variations in the characteristic physical properties of cells and other bioparticles.

Novel implementation and application of the technique has demonstrated the isolation and concentration of blood cells from a complex biological sample, differentiation of bacterial strains within a single species, and separation of antibiotic-resistant and antibiotic-susceptible bacteria. Furthermore, this approach allows simultaneous concentration of analyte, facilitating detection and downstream analysis. A theoretical description of the resolving capabilities of g-iDEP was also developed. This theory explores the relationship between experimental parameters and resolution. Results indicate the possibility of differentiating particles with dielectrophoretic mobilities that differ by as little as one part in 100,000,000, or electrophoretic mobilities differing by as little as one part in 100,000. These results indicate the potential g-iDEP holds in terms of both separatory power and the possibility for diagnostic applications.

Contributors

Agent

Created

Date Created
2015