Matching Items (11)
Filtering by

Clear all filters

136516-Thumbnail Image.png
Description
Bots tamper with social media networks by artificially inflating the popularity of certain topics. In this paper, we define what a bot is, we detail different motivations for bots, we describe previous work in bot detection and observation, and then we perform bot detection of our own. For our bot

Bots tamper with social media networks by artificially inflating the popularity of certain topics. In this paper, we define what a bot is, we detail different motivations for bots, we describe previous work in bot detection and observation, and then we perform bot detection of our own. For our bot detection, we are interested in bots on Twitter that tweet Arabic extremist-like phrases. A testing dataset is collected using the honeypot method, and five different heuristics are measured for their effectiveness in detecting bots. The model underperformed, but we have laid the ground-work for a vastly untapped focus on bot detection: extremist ideal diffusion through bots.
ContributorsKarlsrud, Mark C. (Author) / Liu, Huan (Thesis director) / Morstatter, Fred (Committee member) / Barrett, The Honors College (Contributor) / Computing and Informatics Program (Contributor) / Computer Science and Engineering Program (Contributor) / School of Mathematical and Statistical Sciences (Contributor)
Created2015-05
137375-Thumbnail Image.png
Description
Smartphones have become increasingly common over the past few years, and mobile games continue to be the most common type of application (Apple, Inc., 2013). For many people, the social aspect of gaming is very important, and thus most mobile games include support for playing with multiple players. However, there

Smartphones have become increasingly common over the past few years, and mobile games continue to be the most common type of application (Apple, Inc., 2013). For many people, the social aspect of gaming is very important, and thus most mobile games include support for playing with multiple players. However, there is a lack of common knowledge about which implementation of this functionality is most favorable from a development standpoint. In this study, we evaluate three different types of multiplayer gameplay (pass-and-play, Bluetooth, and GameCenter) via development cost and user interviews. We find that pass-and-play, the most easily-implemented mode, is not favored by players due to its inconvenience. We also find that GameCenter is not as well favored as expected due to latency of GameCenter's servers, and that Bluetooth multiplayer is the most well favored for social play due to its similarity to real-life play. Despite there being a large overhead in developing and testing Bluetooth and GameCenter multiplayer due to Apple's development process, this is irrelevant since professional developers must enroll in this process anyway. Therefore, the most effective multiplayer mode to develop is mostly determined by whether Internet play is desirable: Bluetooth if not, GameCenter if so. Future studies involving more complete development work and more types of multiplayer modes could yield more promising results.
ContributorsBradley, Michael Robert (Author) / Collofello, James (Thesis director) / Wilkerson, Kelly (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Computer Science and Engineering Program (Contributor)
Created2013-12
137174-Thumbnail Image.png
Description
Twitter has become a very popular social media site that is used daily by many people and organizations. This paper will focus on the financial aspect of Twitter, as a process will be shown to be able to mine data about specific companies' stock prices. This was done by writing

Twitter has become a very popular social media site that is used daily by many people and organizations. This paper will focus on the financial aspect of Twitter, as a process will be shown to be able to mine data about specific companies' stock prices. This was done by writing a program to grab tweets about the stocks of the thirty companies in the Dow Jones.
ContributorsLarson, Grant Elliott (Author) / Davulcu, Hasan (Thesis director) / Ye, Jieping (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor)
Created2014-05
133143-Thumbnail Image.png
Description
The prevalence of bots, or automated accounts, on social media is a well-known problem. Some of the ways bots harm social media users include, but are not limited to, spreading misinformation, influencing topic discussions, and dispersing harmful links. Bots have affected the field of disaster relief on social media as

The prevalence of bots, or automated accounts, on social media is a well-known problem. Some of the ways bots harm social media users include, but are not limited to, spreading misinformation, influencing topic discussions, and dispersing harmful links. Bots have affected the field of disaster relief on social media as well. These bots cause problems such as preventing rescuers from determining credible calls for help, spreading fake news and other malicious content, and generating large amounts of content which burdens rescuers attempting to provide aid in the aftermath of disasters. To address these problems, this research seeks to detect bots participating in disaster event related discussions and increase the recall, or number of bots removed from the network, of Twitter bot detection methods. The removal of these bots will also prevent human users from accidentally interacting with these bot accounts and being manipulated by them. To accomplish this goal, an existing bot detection classification algorithm known as BoostOR was employed. BoostOR is an ensemble learning algorithm originally modeled to increase bot detection recall in a dataset and it has the possibility to solve the social media bot dilemma where there may be several different types of bots in the data. BoostOR was first introduced as an adjustment to existing ensemble classifiers to increase recall. However, after testing the BoostOR algorithm on unobserved datasets, results showed that BoostOR does not perform as expected. This study attempts to improve the BoostOR algorithm by comparing it with a baseline classification algorithm, AdaBoost, and then discussing the intentional differences between the two. Additionally, this study presents the main factors which contribute to the shortcomings of the BoostOR algorithm and proposes a solution to improve it. These recommendations should ensure that the BoostOR algorithm can be applied to new and unobserved datasets in the future.
ContributorsDavis, Matthew William (Author) / Liu, Huan (Thesis director) / Nazer, Tahora H. (Committee member) / Computer Science and Engineering Program (Contributor, Contributor) / Department of Information Systems (Contributor) / Barrett, The Honors College (Contributor)
Created2018-12
134809-Thumbnail Image.png
Description
Social media has become a direct and effective means of transmitting personal opinions into the cyberspace. The use of certain key-words and their connotations in tweets portray a meaning that goes beyond the screen and affects behavior. During terror attacks or worldwide crises, people turn to social media as a

Social media has become a direct and effective means of transmitting personal opinions into the cyberspace. The use of certain key-words and their connotations in tweets portray a meaning that goes beyond the screen and affects behavior. During terror attacks or worldwide crises, people turn to social media as a means of managing their anxiety, a mechanism of Terror Management Theory (TMT). These opinions have distinct impacts on the emotions that people express both online and offline through both positive and negative sentiments. This paper focuses on using sentiment analysis on twitter hash-tags during five major terrorist attacks that created a significant response on social media, which collectively show the effects that 140-character tweets have on perceptions in social media. The purpose of analyzing the sentiments of tweets after terror attacks allows for the visualization of the effect of key-words and the possibility of manipulation by the use of emotional contagion. Through sentiment analysis, positive, negative and neutral emotions were portrayed in the tweets. The keywords detected also portray characteristics about terror attacks which would allow for future analysis and predictions in regards to propagating a specific emotion on social media during future crisis.
ContributorsHarikumar, Swathikrishna (Author) / Davulcu, Hasan (Thesis director) / Bodford, Jessica (Committee member) / Computer Science and Engineering Program (Contributor) / Department of Information Systems (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
135099-Thumbnail Image.png
Description
Smartphone privacy is a growing concern around the world; smartphone applications routinely take personal information from our phones and monetize it for their own profit. Worse, they're doing it legally. The Terms of Service allow companies to use this information to market, promote, and sell personal data. Most users seem

Smartphone privacy is a growing concern around the world; smartphone applications routinely take personal information from our phones and monetize it for their own profit. Worse, they're doing it legally. The Terms of Service allow companies to use this information to market, promote, and sell personal data. Most users seem to be either unaware of it, or unconcerned by it. This has negative implications for the future of privacy, particularly as the idea of smart home technology becomes a reality. If this is what privacy looks like now, with only one major type of smart device on the market, what will the future hold, when the smart home systems come into play. In order to examine this question, I investigated how much awareness/knowledge smartphone users of a specific demographic (millennials aged 18-25) knew about their smartphone's data and where it goes. I wanted three questions answered: - For what purposes do millennials use their smartphones? - What do they know about smartphone privacy and security? - How will this affect the future of privacy? To accomplish this, I gathered information using a distributed survey to millennials attending Arizona State University. Using statistical analysis, I exposed trends for this demographic, discovering that there isn't a lack of knowledge among millennials; most are aware that smartphone apps can collect and share data and many of the participants are not comfortable with the current state of smartphone privacy. However, more than half of the study participants indicated that they never read an app's Terms of Service. Due to the nature of the privacy vs. convenience argument, users will willingly agree to let apps take their personal in- formation, since they don't want to give up the convenience.
ContributorsJones, Scott Spenser (Author) / Atkinson, Robert (Thesis director) / Chavez-Echeagaray, Maria Elena (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
Description

Over the past couple of years, the focus on the prevalence of hate-speech and misinformation on the internet has increased. Lawmakers feel that repealing or reforming Section 230 of the Communication Decency Act is the way to go, considering that the law has been used to protect companies from any

Over the past couple of years, the focus on the prevalence of hate-speech and misinformation on the internet has increased. Lawmakers feel that repealing or reforming Section 230 of the Communication Decency Act is the way to go, considering that the law has been used to protect companies from any liability in the past. In this podcast series, I will be explaining what Section 230 is, how it affects us, and what changes are being proposed. In doing so, I wish to shed a light on how the problems of the internet are not solely in the hands of social media giants and a 26-word long law, but all its users that make up our global community.

ContributorsAvi, Pratyush (Author) / Schmidt, Peter (Thesis director) / Voorhees, Matthew (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
147748-Thumbnail Image.png
Description

The role of technology in shaping modern society has become increasingly important in the context of current democratic politics, especially when examined through the lens of social media. Twitter is a prominent social media platform used as a political medium, contributing to political movements such as #OccupyWallStreet, #MeToo, and

The role of technology in shaping modern society has become increasingly important in the context of current democratic politics, especially when examined through the lens of social media. Twitter is a prominent social media platform used as a political medium, contributing to political movements such as #OccupyWallStreet, #MeToo, and #BlackLivesMatter. Using the #BlackLivesMatter movement as an illustrative case to establish patterns in Twitter usage, this thesis aims to answer the question “to what extent is Twitter an accurate representation of “real life” in terms of performative activism and user engagement?” The discussion of Twitter is contextualized by research on Twitter’s use in politics, both as a mobilizing force and potential to divide and mislead. Using intervals of time between 2014 – 2020, Twitter data containing #BlackLivesMatter is collected and analyzed. The discussion of findings centers around the role of performative activism in social mobilization on twitter. The analysis shows patterns in the data that indicates performative activism can skew the real picture of civic engagement, which can impact the way in which public opinion affects future public policy and mobilization.

ContributorsTutelman, Laura (Author) / Voorhees, Matthew (Thesis director) / Kawski, Matthias (Committee member) / School of Mathematical and Statistical Sciences (Contributor) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
166415-Thumbnail Image.png
Description

Social injustice issues are a familiar, yet very arduous topic to define. This is because they are difficult to predict and tough to understand. Injustice issues negatively affect communities because they directly violate human rights and they span a wide range of areas. For instance, injustice issues can relate to

Social injustice issues are a familiar, yet very arduous topic to define. This is because they are difficult to predict and tough to understand. Injustice issues negatively affect communities because they directly violate human rights and they span a wide range of areas. For instance, injustice issues can relate to unfair labor practices, racism, gender bias, politics etc. This leaves numerous individuals wondering how they can make sense of social injustice issues and perhaps take efforts to stop them from occurring in the future. In an attempt to understand the rather complicated nature of social injustice, this thesis takes a data driven approach to define a social injustice index for a specific country, India. The thesis is an attempt to quantify and track social injustice through social media to see the current social climate. This was accomplished by developing a web scraper to collect hate speech data from Twitter. The tweets collected were then classified by their level of hate and presented on a choropleth map of India. Ultimately, a user viewing the ‘India Social Injustice Index’ map should be able to simply view an index score for a desired state in India through a single click. This thesis hopes to make it simple for any user viewing the social injustice map to make better sense of injustice issues.

ContributorsDeosthali, Shefali (Author) / Chavez-Echeagaray, Maria Elena (Thesis director) / Mathews, Nicolle (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor)
Created2022-05
Description
In this paper I defend the argument that public reaction to news headlines correlates with the short-term price direction of Bitcoin. I collected a month's worth of Bitcoin data consisting of news headlines, tweets, and the price of the cryptocurrency. I fed this data into a Long Short-Term Memory Neural

In this paper I defend the argument that public reaction to news headlines correlates with the short-term price direction of Bitcoin. I collected a month's worth of Bitcoin data consisting of news headlines, tweets, and the price of the cryptocurrency. I fed this data into a Long Short-Term Memory Neural Network and built a model that predicted Bitcoin price for a new timeframe. The model correctly predicted 75% of test set price trends on 3.25 hour time intervals. This is higher than the 53.57% accuracy tested with a Bitcoin price model without sentiment data. I concluded public reaction to Bitcoin news headlines has an effect on the short-term price direction of the cryptocurrency. Investors can use my model to help them in their decision-making process when making short-term Bitcoin investment decisions.
ContributorsSteinberg, Sam (Author) / Boscovic, Dragan (Thesis director) / Davulcu, Hasan (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05