Matching Items (3)
Filtering by

Clear all filters

155916-Thumbnail Image.png
Description
Aluminum alloys are ubiquitously used in almost all structural applications due to their high strength-to-weight ratio. Their superior mechanical performance can be attributed to complex dispersions of nanoscale intermetallic particles that precipitate out from the alloy’s solid solution and offer resistance to deformation. Although they have been extensively investigated in

Aluminum alloys are ubiquitously used in almost all structural applications due to their high strength-to-weight ratio. Their superior mechanical performance can be attributed to complex dispersions of nanoscale intermetallic particles that precipitate out from the alloy’s solid solution and offer resistance to deformation. Although they have been extensively investigated in the last century, the traditional approaches employed in the past haven’t rendered an authoritative microstructural understanding in such materials. The effect of the precipitates’ inherent complex morphology and their three-dimensional (3D) spatial distribution on evolution and deformation behavior have often been precluded. In this study, for the first time, synchrotron-based hard X-ray nano-tomography has been implemented in Al-Cu alloys to measure growth kinetics of different nanoscale phases in 3D and reveal mechanistic insights behind some of the observed novel phase transformation reactions occurring at high temperatures. The experimental results were reconciled with coarsening models from the LSW theory to an unprecedented extent, thereby establishing a new paradigm for thermodynamic analysis of precipitate assemblies. By using a unique correlative approach, a non-destructive means of estimating precipitation-strengthening in such alloys has been introduced. Limitations of using existing mechanical strengthening models in such alloys have been discussed and a means to quantify individual contributions from different strengthening mechanisms has been established.

The current rapid pace of technological progress necessitates the demand for more resilient and high-performance alloys. To achieve this, a thorough understanding of the relationships between material properties and its structure is indispensable. To establish this correlation and achieve desired properties from structural alloys, microstructural response to mechanical stimuli needs to be understood in three-dimensions (3D). To that effect, in situ tests were conducted at the synchrotron (Advanced Photon Source) using Transmission X-Ray Microscopy as well as in a scanning electron microscope (SEM) to study real-time damage evolution in such alloys. Findings of precipitate size-dependent transition in deformation behavior from these tests have inspired a novel resilient aluminum alloy design.
ContributorsKaira, Chandrashekara Shashank (Author) / Chawla, Nikhilesh (Thesis advisor) / Solanki, Kiran (Committee member) / Jiao, Yang (Committee member) / De Andrade, Vincent (Committee member) / Arizona State University (Publisher)
Created2017
155793-Thumbnail Image.png
Description
Nanocrystalline (NC) and Ultrafine-grained (UFG) metal films exhibit a wide range of enhanced mechanical properties compared to their coarse-grained counterparts. These properties, such as very high strength, primarily arise from the change in the underlying deformation mechanisms. Experimental and simulation studies have shown that because of the small grain size,

Nanocrystalline (NC) and Ultrafine-grained (UFG) metal films exhibit a wide range of enhanced mechanical properties compared to their coarse-grained counterparts. These properties, such as very high strength, primarily arise from the change in the underlying deformation mechanisms. Experimental and simulation studies have shown that because of the small grain size, conventional dislocation plasticity is curtailed in these materials and grain boundary mediated mechanisms become more important. Although the deformation behavior and the underlying mechanisms in these materials have been investigated in depth, relatively little attention has been focused on the inhomogeneous nature of their microstructure (particularly originating from the texture of the film) and its influence on their macroscopic response. Furthermore, the rate dependency of mechanical response in NC/UFG metal films with different textures has not been systematically investigated. The objectives of this dissertation are two-fold.

The first objective is to carry out a systematic investigation of the mechanical behavior of NC/UFG thin films with different textures under different loading rates. This includes a novel approach to study the effect of texture-induced plastic anisotropy on mechanical behavior of the films. Efforts are made to correlate the behavior of UFG metal films and the underlying deformation mechanisms. The second objective is to understand the deformation mechanisms of UFG aluminum films using in-situ transmission electron microscopy (TEM) experiments with Automated Crystal Orientation Mapping. This technique enables us to investigate grain rotations in UFG Al films and to monitor the microstructural changes in these films during deformation, thereby revealing detailed information about the deformation mechanisms prevalent in UFG metal films.
ContributorsIzadi, Ehsan (Author) / Rajagopalan, Jagannathan (Thesis advisor) / Peralta, Pedro (Committee member) / Chawla, Nikhilesh (Committee member) / Solanki, Kiran (Committee member) / Oswald, Jay (Committee member) / Arizona State University (Publisher)
Created2017
171367-Thumbnail Image.png
Description
In recent years, the scientific community around the synthesis and processing of nanoporous metals is striving to integrate them into powder metallurgy processes such as additive manufacturing since it has a potential to fabricate 3D hierarchical high surface area electrodes for energy applications. Recent research in dealloying – a versatile

In recent years, the scientific community around the synthesis and processing of nanoporous metals is striving to integrate them into powder metallurgy processes such as additive manufacturing since it has a potential to fabricate 3D hierarchical high surface area electrodes for energy applications. Recent research in dealloying – a versatile method for synthesizing nanoporous metals – emphasized the need in understanding its process-structure relationships to independently control the relative density, ligament and pore sizes with good process reproducibly. In this dissertation, a new understanding of the dealloying process is presented for synthesizing (i) nanoporous gold thin-films and (ii) nanoporous Cu spherical powders with an emphasis on understanding variability in their process-structure relationships and process scalability. First, this work sheds the light on the nature of the dealloying front and its percolation along the grain boundaries in nanocrystalline gold-silver thin films by studying the early stages of ligament nucleation. Additionally, this work analyses its variability by investigating new process variables such as (i) equilibration time and (ii) precursor aging and their impacts in achieving process reproducibility. The correlation of relative density with ligament size is contextualized with state-of-the-art data mining research. Second, this work provides a new methodology for large scale production of nanoporous Cu powder and demonstrates its integration with powder casting to fabricate porous conductive electrode. By understanding the influence of etching solution concentration and titration methodology on the structure and composition of nanoporous Cu, it was possible to fabricate precipitate-free powders at high throughputs. Further, the nature of oxygen incorporation into porous Cu powder was studied as a function of surface-to-volume ratio of powder in atmospheric conditions. To consolidate powders into parts via open-die casting, this work harvests Ostwald Ripening phenomena associated with thermal coarsening in nanoporous metals to weld them at low temperatures (approximately one-third of its melting temperature). This work represents a major step towards the integration of nanoporous Cu feedstocks into additive manufacturing.
ContributorsNiauzorau, Stanislau (Author) / Azeredo, Bruno (Thesis advisor) / Sieradzki, Karl (Committee member) / Song, Kenan (Committee member) / Chawla, Nikhilesh (Committee member) / Arizona State University (Publisher)
Created2022