Matching Items (15)
Filtering by

Clear all filters

151648-Thumbnail Image.png
Description
Since its inception about three decades ago, silicon on insulator (SOI) technology has come a long way to be included in the microelectronics roadmap. Earlier, scientists and engineers focused on ways to increase the microprocessor clock frequency and speed. Today, with smart phones and tablets gaining popularity, power consumption has

Since its inception about three decades ago, silicon on insulator (SOI) technology has come a long way to be included in the microelectronics roadmap. Earlier, scientists and engineers focused on ways to increase the microprocessor clock frequency and speed. Today, with smart phones and tablets gaining popularity, power consumption has become a major factor. In this thesis, self-heating effects in a 25nm fully depleted (FD) SOI device are studied by implementing a 2-D particle based device simulator coupled self-consistently with the energy balance equations for both acoustic and optical phonons. Semi-analytical expressions for acoustic and optical phonon scattering rates (all modes) are derived and evaluated using quadratic dispersion relationships. Moreover, probability distribution functions for the final polar angle after scattering is also computed and the rejection technique is implemented for its selection. Since the temperature profile varies throughout the device, temperature dependent scattering tables are used for the electron transport kernel. The phonon energy balance equations are also modified to account for inelasticity in acoustic phonon scattering for all branches. Results obtained from this simulation help in understanding self-heating and the effects it has on the device characteristics. The temperature profiles in the device show a decreasing trend which can be attributed to the inelastic interaction between the electrons and the acoustic phonons. This is further proven by comparing the temperature plots with the simulation results that assume the elastic and equipartition approximation for acoustic and the Einstein model for optical phonons. Thus, acoustic phonon inelasticity and the quadratic phonon dispersion relationships play a crucial role in studying self-heating effects.
ContributorsGada, Manan Laxmichand (Author) / Vasileska, Dragica (Thesis advisor) / Ferry, David K. (Committee member) / Goodnick, Stephen M (Committee member) / Arizona State University (Publisher)
Created2013
153047-Thumbnail Image.png
Description
This dissertation aims to demonstrate a new approach to fabricating solar cells for spectrum-splitting photovoltaic systems with the potential to reduce their cost and complexity of manufacturing, called Monolithically Integrated Laterally Arrayed Multiple Band gap (MILAMB) solar cells. Single crystal semiconductor alloy nanowire (NW) ensembles are grown with the alloy

This dissertation aims to demonstrate a new approach to fabricating solar cells for spectrum-splitting photovoltaic systems with the potential to reduce their cost and complexity of manufacturing, called Monolithically Integrated Laterally Arrayed Multiple Band gap (MILAMB) solar cells. Single crystal semiconductor alloy nanowire (NW) ensembles are grown with the alloy composition and band gap changing continuously across a broad range over the surface of a single substrate in a single, inexpensive growth step by the Dual-Gradient Method. The nanowire ensembles then serve as the absorbing materials in a set of solar cells for spectrum-splitting photovoltaic systems.

Preliminary design and simulation studies based on Anderson's model band line-ups were undertaken for CdPbS and InGaN alloys. Systems of six subcells obtained efficiencies in the 32-38% range for CdPbS and 34-40% for InGaN at 1-240 suns, though both materials systems require significant development before these results could be achieved experimentally. For an experimental demonstration, CdSSe was selected due to its availability. Proof-of-concept CdSSe nanowire ensemble solar cells with two subcells were fabricated simultaneously on one substrate. I-V characterization under 1 sun AM1.5G conditions yielded open-circuit voltages (Voc) up to 307 and 173 mV and short-circuit current densities (Jsc) up to 0.091 and 0.974 mA/cm2 for the CdS- and CdSe-rich cells, respectively. Similar thin film cells were also fabricated for comparison. The nanowire cells showed substantially higher Voc than the film cells, which was attributed to higher material quality in the CdSSe absorber. I-V measurements were also conducted with optical filters to simulate a simple form of spectrum-splitting. The CdS-rich cells showed uniformly higher Voc and fill factor (FF) than the CdSe-rich cells, as expected due to their larger band gaps. This suggested higher power density was produced by the CdS-rich cells on the single-nanowire level, which is the principal benefit of spectrum-splitting. These results constitute a proof-of-concept experimental demonstration of the MILAMB approach to fabricating multiple cells for spectrum-splitting photovoltaics. Future systems based on this approach could help to reduce the cost and complexity of manufacturing spectrum-splitting photovoltaic systems and offer a low cost alternative to multi-junction tandems for achieving high efficiencies.
ContributorsCaselli, Derek (Author) / Ning, Cun-Zheng (Thesis advisor) / Tao, Meng (Committee member) / Yu, Hongbin (Committee member) / Vasileska, Dragica (Committee member) / Arizona State University (Publisher)
Created2014
149996-Thumbnail Image.png
Description
One of the challenges in future semiconductor device design is excessive rise of power dissipation and device temperatures. With the introduction of new geometrically confined device structures like SOI, FinFET, nanowires and continuous incorporation of new materials with poor thermal conductivities in the device active region, the device thermal problem

One of the challenges in future semiconductor device design is excessive rise of power dissipation and device temperatures. With the introduction of new geometrically confined device structures like SOI, FinFET, nanowires and continuous incorporation of new materials with poor thermal conductivities in the device active region, the device thermal problem is expected to become more challenging in coming years. This work examines the degradation in the ON-current due to self-heating effects in 10 nm channel length silicon nanowire transistors. As part of this dissertation, a 3D electrothermal device simulator is developed that self-consistently solves electron Boltzmann transport equation with 3D energy balance equations for both the acoustic and the optical phonons. This device simulator predicts temperature variations and other physical and electrical parameters across the device for different bias and boundary conditions. The simulation results show insignificant current degradation for nanowire self-heating because of pronounced velocity overshoot effect. In addition, this work explores the role of various placement of the source and drain contacts on the magnitude of self-heating effect in nanowire transistors. This work also investigates the simultaneous influence of self-heating and random charge effects on the magnitude of the ON current for both positively and negatively charged single charges. This research suggests that the self-heating effects affect the ON-current in two ways: (1) by lowering the barrier at the source end of the channel, thus allowing more carriers to go through, and (2) via the screening effect of the Coulomb potential. To examine the effect of temperature dependent thermal conductivity of thin silicon films in nanowire transistors, Selberherr's thermal conductivity model is used in the device simulator. The simulations results show larger current degradation because of self-heating due to decreased thermal conductivity . Crystallographic direction dependent thermal conductivity is also included in the device simulations. Larger degradation is observed in the current along the [100] direction when compared to the [110] direction which is in agreement with the values for the thermal conductivity tensor provided by Zlatan Aksamija.
ContributorsHossain, Arif (Author) / Vasileska, Dragica (Thesis advisor) / Ahmed, Shaikh (Committee member) / Bakkaloglu, Bertan (Committee member) / Goodnick, Stephen (Committee member) / Arizona State University (Publisher)
Created2011
150443-Thumbnail Image.png
Description
ABSTRACT An Ensemble Monte Carlo (EMC) computer code has been developed to simulate, semi-classically, spin-dependent electron transport in quasi two-dimensional (2D) III-V semiconductors. The code accounts for both three-dimensional (3D) and quasi-2D transport, utilizing either 3D or 2D scattering mechanisms, as appropriate. Phonon, alloy, interface roughness, and impurity scattering mechanisms

ABSTRACT An Ensemble Monte Carlo (EMC) computer code has been developed to simulate, semi-classically, spin-dependent electron transport in quasi two-dimensional (2D) III-V semiconductors. The code accounts for both three-dimensional (3D) and quasi-2D transport, utilizing either 3D or 2D scattering mechanisms, as appropriate. Phonon, alloy, interface roughness, and impurity scattering mechanisms are included, accounting for the Pauli Exclusion Principle via a rejection algorithm. The 2D carrier states are calculated via a self-consistent 1D Schrödinger-3D-Poisson solution in which the charge distribution of the 2D carriers in the quantization direction is taken as the spatial distribution of the squared envelope functions within the Hartree approximation. The wavefunctions, subband energies, and 2D scattering rates are updated periodically by solving a series of 1D Schrödinger wave equations (SWE) over the real-space domain of the device at fixed time intervals. The electrostatic potential is updated by periodically solving the 3D Poisson equation. Spin-polarized transport is modeled via a spin density-matrix formalism that accounts for D'yakanov-Perel (DP) scattering. Also, the code allows for the easy inclusion of additional scattering mechanisms and structural modifications to devices. As an application of the simulator, the current voltage characteristics of an InGaAs/InAlAs HEMT are simulated, corresponding to nanoscale III-V HEMTs currently being fabricated by Intel Corporation. The comparative effects of various scattering parameters, material properties and structural attributes are investigated and compared with experiments where reasonable agreement is obtained. The spatial evolution of spin-polarized carriers in prototypical Spin Field Effect Transistor (SpinFET) devices is then simulated. Studies of the spin coherence times in quasi-2D structures is first investigated and compared to experimental results. It is found that the simulated spin coherence times for GaAs structures are in reasonable agreement with experiment. The SpinFET structure studied is a scaled-down version of the InGaAs/InAlAs HEMT discussed in this work, in which spin-polarized carriers are injected at the source, and the coherence length is studied as a function of gate voltage via the Rashba effect.
ContributorsTierney, Brian David (Author) / Goodnick, Stephen (Thesis advisor) / Ferry, David (Committee member) / Akis, Richard (Committee member) / Saraniti, Marco (Committee member) / Vasileska, Dragica (Committee member) / Arizona State University (Publisher)
Created2011
150588-Thumbnail Image.png
Description
This thesis summarizes the research work carried out on design, modeling and simulation of semiconductor nanophotonic devices. The research includes design of nanowire (NW) lasers, modeling of active plasmonic waveguides, design of plasmonic nano-lasers, and design of all-semiconductor plasmonic systems. For the NW part, a comparative study of electrical injection

This thesis summarizes the research work carried out on design, modeling and simulation of semiconductor nanophotonic devices. The research includes design of nanowire (NW) lasers, modeling of active plasmonic waveguides, design of plasmonic nano-lasers, and design of all-semiconductor plasmonic systems. For the NW part, a comparative study of electrical injection in the longitudinal p-i-n and coaxial p-n core-shell NWs was performed. It is found that high density carriers can be efficiently injected into and confined in the core-shell structure. The required bias voltage and doping concentrations in the core-shell structure are smaller than those in the longitudinal p-i-n structure. A new device structure with core-shell configuration at the p and n contact regions for electrically driven single NW laser was proposed. Through a comprehensive design trade-off between threshold gain and threshold voltage, room temperature lasing has been proved in the laser with low threshold current and large output efficiency. For the plasmonic part, the propagation of surface plasmon polariton (SPP) in a metal-semiconductor-metal structure where semiconductor is highly excited to have an optical gain was investigated. It is shown that near the resonance the SPP mode experiences an unexpected giant modal gain that is 1000 times of the material gain in the semiconductor and the corresponding confinement factor is as high as 105. The physical origin of the giant modal gain is the slowing down of the average energy propagation in the structure. Secondly, SPP modes lasing in a metal-insulator-semiconductor multi-layer structure was investigated. It is shown that the lasing threshold can be reduced by structural optimization. A specific design example was optimized using AlGaAs/GaAs/AlGaAs single quantum well sandwiched between silver layers. This cavity has a physical volume of 1.5×10-4 λ03 which is the smallest nanolaser reported so far. Finally, the all-semiconductor based plasmonics was studied. It is found that InAs is superior to other common semiconductors for plasmonic application in mid-infrared range. A plasmonic system made of InAs, GaSb and AlSb layers, consisting of a plasmonic source, waveguide and detector was proposed. This on-chip integrated system is realizable in a single epitaxial growth process.
ContributorsLi, Debin (Author) / Ning, Cun-Zheng (Thesis advisor) / Zhang, Yong-Hang (Committee member) / Balanis, Constantine A (Committee member) / Yu, Hongbin (Committee member) / Arizona State University (Publisher)
Created2012
150852-Thumbnail Image.png
Description
Nanowires (NWs) have attracted many interests due to their advance in synthesis and their unique structural, electrical and optical properties. NWs have been realized as promising candidates for future photonic platforms. In this work, erbium chloride silicate (ECS), CdS and CdSSe NWs growth by vapor-liquid-solid mechanism and their characterization were

Nanowires (NWs) have attracted many interests due to their advance in synthesis and their unique structural, electrical and optical properties. NWs have been realized as promising candidates for future photonic platforms. In this work, erbium chloride silicate (ECS), CdS and CdSSe NWs growth by vapor-liquid-solid mechanism and their characterization were demonstrated. In the ECS NWs part, systematic experiments were performed to investigate the relation between growth temperature and NWs structure. Scanning electron microscopy, Raman spectroscopy, X-ray diffraction and photoluminescence characterization were used to study the NWs morphology, crystal quality and optical properties. At low growth temperature, there was strong Si Raman signal observed indicating ECS NWs have Si core. At high growth temperature, the excess Si signal was disappeared and the NWs showed better crystal quality and optical properties. The growth temperature is the key parameter that will induce the transition from Si/ECS core-shell NWs structure to solid ECS NWs. With the merits of high Er concentration and long PL lifetime, ECS NWs can serve as optical gain material with emission at 1.5 μm for communications and amplifiers. In the CdS, CdSSe NWs part, the band gap engineering of CdSSe NWs with spatial composition tuning along single NWs were demonstrated. The first step of realizing CdSSe NWs was the controlled growth of CdS NWs. It showed that overall pressure would largely affect the lengths of the CdS NWs. NWs with longer length can be obtained at higher pressure. Then, based on CdS NWs growth and by adding CdSe step by step, composition graded CdSSe alloy NWs were successfully synthesized. The temperature control over the source vapor concentration plays the key role for the growth.
ContributorsNing, Hao (Author) / Ning, Cunzheng (Thesis advisor) / Yu, Hongbin (Committee member) / Zhang, Yong-Hang (Committee member) / Arizona State University (Publisher)
Created2012
151142-Thumbnail Image.png
Description
This dissertation addresses challenges pertaining to multi-junction (MJ) solar cells from material development to device design and characterization. Firstly, among the various methods to improve the energy conversion efficiency of MJ solar cells using, a novel approach proposed recently is to use II-VI (MgZnCd)(SeTe) and III-V (AlGaIn)(AsSb) semiconductors lattice-matched on

This dissertation addresses challenges pertaining to multi-junction (MJ) solar cells from material development to device design and characterization. Firstly, among the various methods to improve the energy conversion efficiency of MJ solar cells using, a novel approach proposed recently is to use II-VI (MgZnCd)(SeTe) and III-V (AlGaIn)(AsSb) semiconductors lattice-matched on GaSb or InAs substrates for current-matched subcells with minimal defect densities. CdSe/CdTe superlattices are proposed as a potential candidate for a subcell in the MJ solar cell designs using this material system, and therefore the material properties of the superlattices are studied. The high structural qualities of the superlattices are obtained from high resolution X-ray diffraction measurements and cross-sectional transmission electron microscopy images. The effective bandgap energies of the superlattices obtained from the photoluminescence (PL) measurements vary with the layer thicknesses, and are smaller than the bandgap energies of either the constituent material. Furthermore, The PL peak position measured at the steady state exhibits a blue shift that increases with the excess carrier concentration. These results confirm a strong type-II band edge alignment between CdSe and CdTe. The valence band offset between unstrained CdSe and CdTe is determined as 0.63 eV±0.06 eV by fitting the measured PL peak positions using the Kronig-Penney model. The blue shift in PL peak position is found to be primarily caused by the band bending effect based on self-consistent solutions of the Schrödinger and Poisson equations. Secondly, the design of the contact grid layout is studied to maximize the power output and energy conversion efficiency for concentrator solar cells. Because the conventional minimum power loss method used for the contact design is not accurate in determining the series resistance loss, a method of using a distributed series resistance model to maximize the power output is proposed for the contact design. It is found that the junction recombination loss in addition to the series resistance loss and shadowing loss can significantly affect the contact layout. The optimal finger spacing and maximum efficiency calculated by the two methods are close, and the differences are dependent on the series resistance and saturation currents of solar cells. Lastly, the accurate measurements of external quantum efficiency (EQE) are important for the design and development of MJ solar cells. However, the electrical and optical couplings between the subcells have caused EQE measurement artifacts. In order to interpret the measurement artifacts, DC and small signal models are built for the bias condition and the scan of chopped monochromatic light in the EQE measurements. Characterization methods are developed for the device parameters used in the models. The EQE measurement artifacts are found to be caused by the shunt and luminescence coupling effects, and can be minimized using proper voltage and light biases. Novel measurement methods using a pulse voltage bias or a pulse light bias are invented to eliminate the EQE measurement artifacts. These measurement methods are nondestructive and easy to implement. The pulse voltage bias or pulse light bias is superimposed on the conventional DC voltage and light biases, in order to control the operating points of the subcells and counterbalance the effects of shunt and luminescence coupling. The methods are demonstrated for the first time to effectively eliminate the measurement artifacts.
ContributorsLi, Jingjing (Author) / Zhang, Yong-Hang (Thesis advisor) / Tao, Meng (Committee member) / Schroder, Dieter (Committee member) / Vasileska, Dragica (Committee member) / Arizona State University (Publisher)
Created2012
150681-Thumbnail Image.png
Description
This thesis mainly focuses on the study of quantum efficiency (QE) and its measurement, especially for nanowires (NWs). First, a brief introduction of nano-technology and nanowire is given to describe my initial research interest. Next various fundamental kinds of recombination mechanisms are described; both for radiative and non-radiative processes. This

This thesis mainly focuses on the study of quantum efficiency (QE) and its measurement, especially for nanowires (NWs). First, a brief introduction of nano-technology and nanowire is given to describe my initial research interest. Next various fundamental kinds of recombination mechanisms are described; both for radiative and non-radiative processes. This is an introduction for defining the internal quantum efficiency (IQE). A relative IQE measurement method is shown following that. Then it comes to the major part of the thesis discussing a procedure of quantum efficiency measurement using photoluminescence (PL) method and an integrating sphere, which has not been much applied to nanowires (NWs). In fact this is a convenient and useful approach for evaluating the quality of NWs since it considers not only the PL emission but also the absorption of NWs. The process is well illustrated and performed with both wavelength-dependent and power-dependent measurements. The measured PLQE is in the range of 0.3% ~ 5.4%. During the measurement, a phenomenon called photodegradation is observed and examined by a set of power-dependence measurements. This effect can be a factor for underestimating the PLQE and a procedure is introduced during the sample preparation process which managed to reduce this effect for some degree.
ContributorsChen, Dongzi (Author) / Ning, Cun-Zheng (Thesis advisor) / Zhang, Yong-Hang (Committee member) / Yu, Hongbin (Committee member) / Arizona State University (Publisher)
Created2012
155915-Thumbnail Image.png
Description
Semiconductor nanowires have the potential to emerge as the building blocks of next generation field-effect transistors, logic gates, solar cells and light emitting diodes. Use of Gallium Nitride (GaN) and other wide bandgap materials combines the advantages of III-nitrides along with the enhanced mobility offered by 2-dimensional confinement present in

Semiconductor nanowires have the potential to emerge as the building blocks of next generation field-effect transistors, logic gates, solar cells and light emitting diodes. Use of Gallium Nitride (GaN) and other wide bandgap materials combines the advantages of III-nitrides along with the enhanced mobility offered by 2-dimensional confinement present in nanowires. The focus of this thesis is on developing a low field mobility model for a GaN nanowire using Ensemble Monte Carlo (EMC) techniques. A 2D Schrödinger-Poisson solver and a one-dimensional Monte Carlo solver is developed for an Aluminum Gallium Nitride/Gallium Nitride Heterostructure nanowire. A GaN/AlN/AlGaN heterostructure device is designed which creates 2-dimensional potential well for electrons. The nanowire is treated as a quasi-1D system in this work. A self-consistent 2D Schrödinger-Poisson solver is designed which determines the subband energies and the corresponding wavefunctions of the confined system. Three scattering mechanisms: acoustic phonon scattering, polar optical phonon scattering and piezoelectric scattering are considered to account for the electron phonon interactions in the system. Overlap integrals and 1D scattering rate expressions are derived for all the mechanisms listed. A generic one-dimensional Monte Carlo solver is also developed. Steady state results from the 1D Monte Carlo solver are extracted to determine the low field mobility of the GaN nanowires.
ContributorsKumar, Viswanathan Naveen (Author) / Vasileska, Dragica (Thesis advisor) / Goodnick, Stephen (Committee member) / Zhao, Yuji (Committee member) / Arizona State University (Publisher)
Created2017
156549-Thumbnail Image.png
Description
Ge1-xSnx and SiyGe1-x-ySnx materials are being researched intensively for applications in infra-red optoelectronic devices. Due to their direct band gap these materials may in-fact be the enabling factor in the commercial realization of silicon photonics/group IV photonics and the integration of nanophotonics with nanoelectronics. However the synthesis of these meta-stable

Ge1-xSnx and SiyGe1-x-ySnx materials are being researched intensively for applications in infra-red optoelectronic devices. Due to their direct band gap these materials may in-fact be the enabling factor in the commercial realization of silicon photonics/group IV photonics and the integration of nanophotonics with nanoelectronics. However the synthesis of these meta-stable semiconductor alloys, with a range of Sn-compositions, remains the primary technical challenge. Highly specialized epitaxial growth methods must be employed to produce single crystal layers which have sufficient quality for optoelectronic device applications. Up to this point these methods have been unfavorable from a semiconductor manufacturing perspective. In this work the growth of high-quality Si-Ge-Sn epitaxial alloys on Ge-buffered Si (100) using an industry-standard reduced pressure chemical vapor deposition reactor and a cost-effective chemistry is demonstrated. The growth kinetics are studied in detail in-order to understand the factors influencing layer composition, morphology, and defectivity. In doing so breakthrough GeSn materials and device results are achieved including methods to overcome the limits of Sn-incorporation and the realization of low-defect and strain-relaxed epitaxial layers with up to 20% Sn.

P and n-type doping methods are presented in addition to the production of SiGeSn ternary alloys. Finally optically stimulated lasing in thick GeSn layers and SiGeSn/GeSn multiple quantum wells is demonstrated. Lasing wavelengths ranging from 2-3 µm at temperatures up to 180K are realized in thick layers. Whereas SiGeSn/GeSn multiple quantum wells on a strain-relaxed GeSn buffers have enabled the first reported SiGeSn/GeSn multiple quantum well laser operating up to 80K with threshold power densities as low as 33 kW/cm2.
ContributorsMargetis, Joseph (Author) / Zhang, Yong-Hang (Thesis advisor) / Chizmeshya, Andrew (Committee member) / Johnson, Shane (Committee member) / Arizona State University (Publisher)
Created2018