Matching Items (8)
Filtering by

Clear all filters

154016-Thumbnail Image.png
Description
Carbon nanomaterials have caught tremendous attention in the last few decades due to their unique physical and chemical properties. Tremendous effort has been made to develop new synthesis techniques for carbon nanomaterials and investigate their properties for different applications. In this work, carbon nanospheres (CNSs), carbon foams (CF), and single-walled

Carbon nanomaterials have caught tremendous attention in the last few decades due to their unique physical and chemical properties. Tremendous effort has been made to develop new synthesis techniques for carbon nanomaterials and investigate their properties for different applications. In this work, carbon nanospheres (CNSs), carbon foams (CF), and single-walled carbon nanotubes (SWNTs) were studied for various applications, including water treatment, energy storage, actuators, and sensors.

A facile spray pyrolysis synthesis technique was developed to synthesize individual CNSs with specific surface area (SSA) up to 1106 m2/g. The hollow CNSs showed adsorption of up to 300 mg rhodamine B dye per gram carbon, which is more than 15 times higher than that observed for conventional carbon black. They were also evaluated as adsorbents for removal of arsenate and selenate from water and displayed good binding to both species, outperforming commercial activated carbons for arsenate removal in pH > 8. When evaluated as supercapacitor electrode materials, specific capacitances of up to 112 F/g at a current density of 0.1 A/g were observed. When used as Li-ion battery anode materials, the CNSs achieved a discharge capacity of 270 mAh/g at a current density of 372 mA/g (1C), which is 4-fold higher than that of commercial graphite anode.

Carbon foams were synthesized using direct pyrolysis and had SSA up to 2340 m2/g. When used as supercapacitor electrode materials, a specific capacitance up to 280 F/g was achieved at current density of 0.1 A/g and remained as high as 207 F/g, even at a high current density of 10 A/g.

A printed walking robot was made from common plastic films and coatings of SWNTs. The solid-state thermal bimorph actuators were multifunctional energy transducers powered by heat, light, or electricity. The actuators were also investigated for photo/thermal detection. Electrochemical actuators based on MnO2 were also studied for potential underwater applications.

SWNTs were also used to fabricate printable electrodes for trace Cr(VI) detection, which displayed sensitivity up to 500 nA/ppb for Cr(VI). The limit of detection was shown to be as low as 5 ppb. A flow detection system based on CNT/printed electrodes was also demonstrated.
ContributorsWang, Chengwei, Ph.D (Author) / Chan, Candace K. (Thesis advisor) / Tongay, Sefaattin (Committee member) / Wang, Qing Hua (Committee member) / Seo, Dong (Committee member) / Arizona State University (Publisher)
Created2015
157157-Thumbnail Image.png
Description
Among the alternative processes for the traditional distillation, adsorption and membrane separations are the two most promising candidates and metal-organic frameworks (MOFs) are the new material candidate as adsorbent or membrane due to their high surface area, various pore sizes, and highly tunable framework functionality. This dissertation presents an investigation

Among the alternative processes for the traditional distillation, adsorption and membrane separations are the two most promising candidates and metal-organic frameworks (MOFs) are the new material candidate as adsorbent or membrane due to their high surface area, various pore sizes, and highly tunable framework functionality. This dissertation presents an investigation of the formation process of MOF membrane, framework defects, and two-dimensional (2D) MOFs, aiming to explore the answers for three critical questions: (1) how to obtain a continuous MOF membrane, (2) how defects form in MOF framework, and (3) how to obtain isolated 2D MOFs. To solve the first problem, the accumulated protons in the MOF synthesis solution is proposed to be the key factor preventing the continuous growth among Universitetet I Oslo-(UiO)-66 crystals. The hypothesis is verified by the growth reactivation under the addition of deprotonating agent. As long as the protons were sufficiently coordinated by the deprotonating agent, the continuous growth of UiO-66 is guaranteed. Moreover, the modulation effect can impact the coordination equilibrium so that an oriented growth of UiO-66 film was achieved in membrane structures. To find the answer for the second problem, the defect formation mechanism in UiO-66 was investigated and the formation of missing-cluster (MC) defects is attributed to the partially-deprotonated ligands. Experimental results show the number of MC defects is sensitive to the addition of deprotonating agent, synthesis temperature, and reactant concentration. Pore size distribution allows an accurate and convenient characterization of the defects. Results show that these defects can cause significant deviations of its pore size distribution from the perfect crystal. The study of the third questions is based on the established bi-phase synthesis method, a facile synthesis method is adopted for the production of high quality 2D MOFs in large scale. Here, pyridine is used as capping reagent to prevent the interplanar hydrogen bond formation. Meanwhile, formic acid and triethylamine as modulator and deprotonating agent to balance the anisotropic growth, crystallinity, and yield in the 2D MOF synthesis. As a result, high quality 2D zinc-terephthalic acid (ZnBDC) and copper-terephthalic acid (CuBDC) with extraordinary aspect ratio samples were successfully synthesized.
ContributorsShan, Bohan (Author) / Mu, Bin (Thesis advisor) / Forzani, Erica (Committee member) / Dai, Lenore (Committee member) / Lin, Jerry (Committee member) / Liu, Jingyue (Committee member) / Arizona State University (Publisher)
Created2019
135442-Thumbnail Image.png
Description
Within recent years, metal-organic frameworks, or MOF’s, have gained a lot of attention in the materials research community. These micro-porous materials are constructed of a metal oxide core and organic linkers, and have a wide-variety of applications due to their extensive material characteristic possibilities. The focus of this study is

Within recent years, metal-organic frameworks, or MOF’s, have gained a lot of attention in the materials research community. These micro-porous materials are constructed of a metal oxide core and organic linkers, and have a wide-variety of applications due to their extensive material characteristic possibilities. The focus of this study is the MOF-5 material, specifically its chemical stability in air. The MOF-5 material has a large pore size of 8 Å, and aperture sizes of 15 and 12 Å. The pore size, pore functionality, and physically stable structure makes MOF-5 a desirable material. MOF-5 holds applications in gas/liquid separation, catalysis, and gas storage. The main problem with the MOF-5 material, however, is its instability in atmospheric air. This inherent instability is due to the water in air binding to the zinc-oxide core, effectively changing the material and its structure. Because of this material weakness, the MOF-5 material is difficult to be utilized in industrial applications. Through the research efforts proposed by this study, the stability of the MOF-5 powder and membrane were studied. MOF-5 powder and a MOF-5 membrane were synthesized and characterized using XRD analysis. In an attempt to improve the stability of MOF-5 in air, methyl groups were added to the organic linker in order to hinder the interaction of water with the Zn4O core. This was done by replacing the terepthalic acid organic linker with 2,5-dimethyl terephthalic acid in the powder and membrane synthesis steps. The methyl-modified MOF-5 powder was found to be stable after several days of exposure to air while the MOF-5 powder exhibited significant crystalline change. The methyl-modified membrane was found to be unstable when synthesized using the same procedure as the MOF-5 membrane.
ContributorsAnderson, Anthony David (Author) / Lin, Jerry Y.S. (Thesis director) / Ibrahim, Amr (Committee member) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
134831-Thumbnail Image.png
Description
Graphene is a very strong two-dimensional material with a lot of potential applications in microelectromechanical systems (MEMS). In this research, graphene is being optimized for use in a 5 m x 5 m graphene resonator. To work properly, this graphene resonator must have a uniform strain across all manufactured devices.

Graphene is a very strong two-dimensional material with a lot of potential applications in microelectromechanical systems (MEMS). In this research, graphene is being optimized for use in a 5 m x 5 m graphene resonator. To work properly, this graphene resonator must have a uniform strain across all manufactured devices. To reduce strain induced in graphene sheets grown for use in these resonators, evaporated platinum has been used in this investigation due to its relatively lower surface roughness compared to copper films. The final goal is to have the layer of ultrathin platinum (<=200 nm) deposited on the MEMS graphene resonator and used to grow graphene directly onto the devices to remove the manual transfer step due to its inscalability. After growth, graphene is coated with polymer and the platinum is then etched. This investigation concentrated on the transfer process of graphene onto Si/SiO2 substrate from the platinum films. It was determined that the ideal platinum etchant was aqua regia at a volumetric ratio of 6:3:1 (H2O:HCl:HNO3). This concentration was dilute enough to preserve the polymer and graphene layer, but strong enough to etch within a day. Type and thickness of polymer support layers were also investigated. PMMA at a thickness of 200 nm was ideal because it was easy to remove with acetone and strong enough to support the graphene during the etch process. A reference growth recipe was used in this investigation, but now that the transfer has been demonstrated, growth can be optimized for even thinner films.
ContributorsCayll, David Richard (Author) / Tongay, Sefaattin (Thesis director) / Lee, Hyunglae (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
134902-Thumbnail Image.png
Description
Metal-organic frameworks (MOFs) are a new set of porous materials comprised of metals or metal clusters bonded together in a coordination system by organic linkers. They are becoming popular for gas separations due to their abilities to be tailored toward specific applications. Zirconium MOFs in particular are known for their

Metal-organic frameworks (MOFs) are a new set of porous materials comprised of metals or metal clusters bonded together in a coordination system by organic linkers. They are becoming popular for gas separations due to their abilities to be tailored toward specific applications. Zirconium MOFs in particular are known for their high stability under standard temperature and pressure due to the strength of the Zirconium-Oxygen coordination bond. However, the acid modulator needed to ensure long range order of the product also prevents complete linker deprotonation. This leads to a powder product that cannot easily be incorporated into continuous MOF membranes. This study therefore implemented a new bi-phase synthesis technique with a deprotonating agent to achieve intergrowth in UiO-66 membranes. Crystal intergrowth will allow for effective gas separations and future permeation testing. During experimentation, successful intergrown UiO-66 membranes were synthesized and characterized. The degree of intergrowth and crystal orientations varied with changing deprotonating agent concentration, modulator concentration, and ligand:modulator ratios. Further studies will focus on achieving the same results on porous substrates.
ContributorsClose, Emily Charlotte (Author) / Mu, Bin (Thesis director) / Shan, Bohan (Committee member) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
154921-Thumbnail Image.png
Description
The proposed research mainly focuses on employing tunable materials to achieve dynamic control of radiative heat transfer in both far and near fields for thermal management. Vanadium dioxide (VO2), which undergoes a phase transition from insulator to metal at the temperature of 341 K, is one tunable material being applied.

The proposed research mainly focuses on employing tunable materials to achieve dynamic control of radiative heat transfer in both far and near fields for thermal management. Vanadium dioxide (VO2), which undergoes a phase transition from insulator to metal at the temperature of 341 K, is one tunable material being applied. The other one is graphene, whose optical properties can be tuned by chemical potential through external bias or chemical doping.

In the far field, a VO2-based metamaterial thermal emitter with switchable emittance in the mid-infrared has been theoretically studied. When VO2 is in the insulating phase, high emittance is observed at the resonance frequency of magnetic polaritons (MPs), while the structure becomes highly reflective when VO2 turns metallic. A VO2-based thermal emitter with tunable emittance is also demonstrated due to the excitation of MP at different resonance frequencies when VO2 changes phase. Moreover, an infrared thermal emitter made of graphene-covered SiC grating could achieve frequency-tunable emittance peak via the change of the graphene chemical potential.

In the near field, a radiation-based thermal rectifier is constructed by investigating radiative transfer between VO2 and SiO2 separated by nanometer vacuum gap distances. Compared to the case where VO2 is set as the emitter at 400 K as a metal, when VO2 is considered as the receiver at 300 K as an insulator, the energy transfer is greatly enhanced due to the strong surface phonon polariton (SPhP) coupling between insulating VO2 and SiO2. A radiation-based thermal switch is also explored by setting VO2 as both the emitter and the receiver. When both VO2 emitter and receiver are at the insulating phase, the switch is at the “on” mode with a much enhanced heat flux due to strong SPhP coupling, while the near-field radiative transfer is greatly suppressed when the emitting VO2 becomes metallic at temperatures higher than 341K during the “off” mode. In addition, an electrically-gated thermal modulator made of graphene covered SiC plates is theoretically studied with modulated radiative transport by varying graphene chemical potential. Moreover, the MP effect on near-field radiative transport has been investigated by spectrally enhancing radiative heat transfer between two metal gratings.
ContributorsYang, Yue (Author) / Wang, Liping (Thesis advisor) / Phelan, Patrick (Committee member) / Wang, Robert (Committee member) / Tongay, Sefaattin (Committee member) / Rykaczewski, Konrad (Committee member) / Arizona State University (Publisher)
Created2016
157733-Thumbnail Image.png
Description
A Fundamental study of bulk, layered, and monolayers bromide lead perovskites structural, optical, and electrical properties have been studied as thickness changes. X-Ray Diffraction (XRD) and Raman spectroscopy measures the structural parameter showing how the difference in the thicknesses changes the crystal structures through observing changes in average lattice constant,

A Fundamental study of bulk, layered, and monolayers bromide lead perovskites structural, optical, and electrical properties have been studied as thickness changes. X-Ray Diffraction (XRD) and Raman spectroscopy measures the structural parameter showing how the difference in the thicknesses changes the crystal structures through observing changes in average lattice constant, atomic spacing, and lattice vibrations.

Optical and electrical properties have also been studied mainly focusing on the thickness effect on different properties where the Photoluminescence (PL) and exciton binding energies show energy shift as thickness of the material changes. Temperature dependent PL has shown different characteristics when comparing methylammonium lead bromide (MAPbBr3) to butylammonium lead bromide (BA2PbBr4) and comparing the two layered n=1 materials butylammonium lead bromide (BA2PbBr4) to butylammonium lead iodide (BA2PbI4). Time-resolved spectroscopy displays different lifetimes as thickness of bromide-based perovskite changes. Finally, thickness dependence (starting from monolayers) Kelvin Probe Force Microscopy (KPFM) of the layered materials BA2PbBr4, Butylammonium(methylammonium)lead bromide (BA2MAPb2Br7), and molybdenum sulfide (MoS2) were studied showing an exponential relation between the thickness of the materials and their surface potentials.
ContributorsAlenezi, Omar (Author) / Tongay, Sefaattin (Thesis advisor) / King, Richard (Thesis advisor) / Yao, Yu (Committee member) / Arizona State University (Publisher)
Created2019
157671-Thumbnail Image.png
Description
More recently there have been a tremendous advancement in theoretical studies showing remarkable properties that could be exploited from transition metal dichalcogenide (TMDC) Janus crystals through various applications. These Janus crystals are having a proven intrinsic electrical field due to breaking of out-of-plane inversion symmetry in a conventional TMDC when

More recently there have been a tremendous advancement in theoretical studies showing remarkable properties that could be exploited from transition metal dichalcogenide (TMDC) Janus crystals through various applications. These Janus crystals are having a proven intrinsic electrical field due to breaking of out-of-plane inversion symmetry in a conventional TMDC when one of the chalcogenides atomic layer is being completely replaced by a layer of different chalcogen element. However, due to lack of accurate processing control at nanometer scales, key for creating a highly crystalline Janus structure has not yet been familiarized. Thus, experimental characterization and implication of these Janus crystals are still in a state of stagnation. This work presents a new advanced methodology that could prove to be highly efficient and effective for selective replacement of top layer atomic sites at room temperature conditions.

This is specifically more focused on proving an easy repeatability for replacement of top atomic layer chalcogenide from a parent structure of already grown TMDC monolayer (via CVD) by a post plasma processing technique. Though this developed technique is not limited to only chalcogen atom replacement but can be extended to any type of surface functionalization requirements.

Basic characterization has been performed on the Janus crystal of SeMoS and SeWS where, creation and characterization of SeWS has been done for the very first time, evidencing a repeatable nature of the developed methodology.
ContributorsTrivedi, Dipesh (Author) / Tongay, Sefaattin (Thesis advisor) / Green, Matthew (Committee member) / Zhuang, Houlong (Committee member) / Arizona State University (Publisher)
Created2019