Matching Items (7)
Filtering by

Clear all filters

151911-Thumbnail Image.png
Description
Nitrate is the most prevalent water pollutant limiting the use of groundwater as a potable water source. The overarching goal of this dissertation was to leverage advances in nanotechnology to improve nitrate photocatalysis and transition treatment to the full-scale. The research objectives were to (1) examine commercial and synthesized photocatalysts,

Nitrate is the most prevalent water pollutant limiting the use of groundwater as a potable water source. The overarching goal of this dissertation was to leverage advances in nanotechnology to improve nitrate photocatalysis and transition treatment to the full-scale. The research objectives were to (1) examine commercial and synthesized photocatalysts, (2) determine the effect of water quality parameters (e.g., pH), (3) conduct responsible engineering by ensuring detection methods were in place for novel materials, and (4) develop a conceptual framework for designing nitrate-specific photocatalysts. The key issues for implementing photocatalysis for nitrate drinking water treatment were efficient nitrate removal at neutral pH and by-product selectivity toward nitrogen gases, rather than by-products that pose a human health concern (e.g., nitrite). Photocatalytic nitrate reduction was found to follow a series of proton-coupled electron transfers. The nitrate reduction rate was limited by the electron-hole recombination rate, and the addition of an electron donor (e.g., formate) was necessary to reduce the recombination rate and achieve efficient nitrate removal. Nano-sized photocatalysts with high surface areas mitigated the negative effects of competing aqueous anions. The key water quality parameter impacting by-product selectivity was pH. For pH < 4, the by-product selectivity was mostly N-gas with some NH4+, but this shifted to NO2- above pH = 4, which suggests the need for proton localization to move beyond NO2-. Co-catalysts that form a Schottky barrier, allowing for localization of electrons, were best for nitrate reduction. Silver was optimal in heterogeneous systems because of its ability to improve nitrate reduction activity and N-gas by-product selectivity, and graphene was optimal in two-electrode systems because of its ability to shuttle electrons to the working electrode. "Environmentally responsible use of nanomaterials" is to ensure that detection methods are in place for the nanomaterials tested. While methods exist for the metals and metal oxides examined, there are currently none for carbon nanotubes (CNTs) and graphene. Acknowledging that risk assessment encompasses dose-response and exposure, new analytical methods were developed for extracting and detecting CNTs and graphene in complex organic environmental (e.g., urban air) and biological matrices (e.g. rat lungs).
ContributorsDoudrick, Kyle (Author) / Westerhoff, Paul (Thesis advisor) / Halden, Rolf (Committee member) / Hristovski, Kiril (Committee member) / Arizona State University (Publisher)
Created2013
150107-Thumbnail Image.png
Description
Titanium dioxide (TiO2) nanomaterial use is becoming more prevalent as is the likelihood of human exposure and environmental release. The goal of this thesis is to develop analytical techniques to quantify the level of TiO2 in complex matrices to support environmental, health, and safety research of TiO2 nanomaterials. A pharmacokinetic

Titanium dioxide (TiO2) nanomaterial use is becoming more prevalent as is the likelihood of human exposure and environmental release. The goal of this thesis is to develop analytical techniques to quantify the level of TiO2 in complex matrices to support environmental, health, and safety research of TiO2 nanomaterials. A pharmacokinetic model showed that the inhalation of TiO2 nanomaterials caused the highest amount to be absorbed and distributed throughout the body. Smaller nanomaterials (< 5nm) accumulated in the kidneys before clearance. Nanoparticles of 25 nm diameter accumulated in the liver and spleen and were cleared from the body slower than smaller nanomaterials. A digestion method using nitric acid, hydrofluoric acid, and hydrogen peroxide was found to digest organic materials and TiO2 with a recovery of >80%. The samples were measured by inductively coupled plasma-mass spectrometry (ICP-MS) and the method detection limit was 600 ng of Ti. An intratracheal instillation study of TiO2 nanomaterials in rats found anatase TiO2 nanoparticles in the caudal lung lobe of rats 1 day post instillation at a concentration of 1.2 ug/mg dry tissue, the highest deposition rate of any TiO2 nanomaterial. For all TiO2 nanomaterial morphologies the concentrations in the caudal lobes were significantly higher than those in the cranial lobes. In a study of TiO2 concentration in food products, white colored foods or foods with a hard outer shell had higher concentrations of TiO2. Hostess Powdered Donettes were found to have the highest Ti mass per serving with 200 mg Ti. As much as 3.8% of the total TiO2 mass was able to pass through a 0.45 um indicating that some of the TiO2 is likely nanosized. In a study of TiO2 concentrations in personal care products and paints, the concentration of TiO2 was as high as 117 ug/mg in Benjamin Moore white paint and 70 ug/mg in a Neutrogena sunscreen. Greater than 6% of Ti in one sunscreen was able to pass through a 0.45 um filter. The nanosized TiO2 in food products and personal care products may release as much as 16 mg of nanosized TiO2 per individual per day to wastewater.
ContributorsWeir, Alex Alan (Author) / Westerhoff, Paul K (Thesis advisor) / Hristovski, Kiril (Committee member) / Herckes, Pierre (Committee member) / Arizona State University (Publisher)
Created2011
150594-Thumbnail Image.png
Description
As engineered nanomaterials (NMs) become used in industry and commerce their loading to sewage will increase. However, the fate of widely used NMs in wastewater treatment plants (WWTPs) remains poorly understood. In this research, sequencing batch reactors (SBRs) were operated with hydraulic (HRT) and sludge (SRT) retention times representative of

As engineered nanomaterials (NMs) become used in industry and commerce their loading to sewage will increase. However, the fate of widely used NMs in wastewater treatment plants (WWTPs) remains poorly understood. In this research, sequencing batch reactors (SBRs) were operated with hydraulic (HRT) and sludge (SRT) retention times representative of full-scale biological WWTPs for several weeks. NM loadings at the higher range of expected environmental concentrations were selected. To achieve the pseudo-equilibrium state concentration of NMs in biomass, SBR experiments needed to operate for more than three times the SRT value, approximately 18 days. Under the conditions tested, NMs had negligible effects on ability of the wastewater bacteria to biodegrade organic material, as measured by chemical oxygen demand (COD). NM mass balance closure was achieved by measuring NMs in liquid effluent and waste biosolids. All NMs were well removed at the typical biomass concentration (1~2 gSS/L). However, carboxy-terminated polymer coated silver nanoparticles (fn-Ag) were removed less effectively (88% removal) than hydroxylated fullerenes (fullerols; >90% removal), nano TiO2 (>95% removal) or aqueous fullerenes (nC60; >95% removal). Although most NMs did not settle out of the feed solution without bacteria present, approximately 65% of the titanium dioxide was removed even in the absence of biomass simply due to self-aggregation and settling. Experiments conducted over 4 months with daily loadings of nC60 showed that nC60 removal from solution depends on the biomass concentration. Under conditions representative of most suspended growth biological WWTPs (e.g., activated sludge), most of the NMs will accumulate in biosolids rather than in liquid effluent discharged to surface waters. Significant fractions of fn-Ag were associated with colloidal material which suggests that efficient particle separation processes (sedimentation or filtration) could further improve removal of NM from effluent. As most NMs appear to accumulate in biosolids, future research should examine the fate of NMs during disposal of WWTP biosolids, which may occur through composting or anaerobic digestion and/or land application, incineration, or landfill disposal.
ContributorsWang, Yifei (Author) / Westerhoff, Paul (Thesis advisor) / Krajmalnik-Brown, Rosa (Committee member) / Rittmann, Bruce (Committee member) / Hristovski, Kiril (Committee member) / Arizona State University (Publisher)
Created2012
153798-Thumbnail Image.png
Description
Nanotechnology is becoming increasingly present in our environment. Engineered nanoparticles (ENPs), defined as objects that measure less than 100 nanometers in at least one dimension, are being integrated into commercial products because of their small size, increased surface area, and quantum effects. These special properties have made ENPs antimicrobial agents

Nanotechnology is becoming increasingly present in our environment. Engineered nanoparticles (ENPs), defined as objects that measure less than 100 nanometers in at least one dimension, are being integrated into commercial products because of their small size, increased surface area, and quantum effects. These special properties have made ENPs antimicrobial agents in clothing and plastics, among other applications in industries such as pharmaceuticals, renewable energy, and prosthetics. This thesis incorporates investigations into both application of nanoparticles into polymers as well as implications of nanoparticle release into the environment. First, the integration of ENPs into polymer fibers via electrospinning was explored. Electrospinning uses an external electric field applied to a polymer solution to produce continuous fibers with large surface area and small volume, a quality which makes the fibers ideal for water and air purification purposes. Indium oxide and titanium dioxide nanoparticles were embedded in polyvinylpyrrolidone and polystyrene. Viscosity, critical voltage, and diameter of electrospun fibers were analyzed in order to determine the effects of nanoparticle integration into the polymers. Critical voltage and viscosity of solution increased at 5 wt% ENP concentration. Fiber morphology was not found to change significantly as a direct effect of ENP addition, but as an effect of increased viscosity and surface tension. These results indicate the possibility for seamless integration of ENPs into electrospun polymers. Implications of ENP release were investigated using phase distribution functional assays of nanoscale silver and silver sulfide, as well as photolysis experiments of nanoscale titanium dioxide to quantify hydroxyl radical production. Functional assays are a means of screening the relevant importance of multiple processes in the environmental fate and transport of ENPs. Four functional assays – water-soil, water-octanol, water-wastewater sludge and water-surfactant – were used to compare concentrations of silver sulfide ENPs (Ag2S-NP) and silver ENPs (AgNP) capped by four different coatings. The functional assays resulted in reproducible experiments which clearly showed variations between nanoparticle phase distributions; the findings may be a product of the effects of the different coatings of the ENPs used. In addition to phase distribution experiments, the production of hydroxyl radical (HO•) by nanoscale titanium dioxide (TiO2) under simulated solar irradiation was investigated. Hydroxyl radical are a short-lived, highly reactive species produced by solar radiation in aquatic environments that affect ecosystem function and degrades pollutants. HO• is produced by photolysis of TiO2 and nitrate (NO3-); these two species were used in photolysis experiments to compare the relative loads of hydroxyl radical which nanoscale TiO2 may add upon release to natural waters. Para-chlorobenzoic acid (pCBA) was used as a probe. Measured rates of pCBA oxidation in the presence of various concentrations of TiO2 nanoparticles and NO3- were utilized to calculate pseudo first order rate constants. Results indicate that, on a mass concentration basis in water, TiO2 produces hydroxyl radical steady state concentrations at 1.3 times more than the equivalent amount of NO3-; however, TiO2 concentrations are generally less than one order of magnitude lower than concentrations of NO3-. This has implications for natural waterways as the amount of nanoscale TiO2 released from consumer products into natural waterways increases in proportion to its use.
ContributorsHoogesteijn von Reitzenstein, Natalia (Author) / Westerhoff, Paul (Thesis advisor) / Herckes, Pierre (Committee member) / Hristovski, Kiril (Committee member) / Arizona State University (Publisher)
Created2015
157022-Thumbnail Image.png
Description
Widespread use of chlorinated solvents for commercial and industrial purposes makes co-occurring contamination by 1,1,1-trichloroethane (TCA), trichloroethene (TCE), and 1,4-dioxane (1,4-D) a serious problem for groundwater. TCE and TCA often are treated by reductive dechlorination, while 1,4-D resists reductive treatment. Aerobic bacteria are able to oxidize 1,4-D, but

Widespread use of chlorinated solvents for commercial and industrial purposes makes co-occurring contamination by 1,1,1-trichloroethane (TCA), trichloroethene (TCE), and 1,4-dioxane (1,4-D) a serious problem for groundwater. TCE and TCA often are treated by reductive dechlorination, while 1,4-D resists reductive treatment. Aerobic bacteria are able to oxidize 1,4-D, but the biological oxidation of 1,4-D could be inhibited TCA, TCE, and their reductive transformation products. To overcome the challenges from co-occurring contamination, I propose a two-stage synergistic system. First, anaerobic reduction of the chlorinated hydrocarbons takes place in a H2-based hollow-fiber “X-film” (biofilm or catalyst-coated film) reactor (MXfR), where “X-film” can be a “bio-film” (MBfR) or an abiotic “palladium-film” (MPfR). Then, aerobic removal of 1,4-D and other organic compounds takes place in an O2-based MBfR. For the reductive part, I tested reductive bio-dechlorination of TCA and TCE simultaneously in an MBfR. I found that the community of anaerobic bacteria can rapidly reduce TCE to cis-dichloroethene (cis-DCE), but further reductions of cis-DCE to vinyl chloride (VC) and VC to ethene were inhibited by TCA. Also, it took months to grow a strong biofilm that could reduce TCA and TCE. Another problem with reductive dechlorination in the MBfR is that mono-chloroethane (MCA) was not reduced to ethane. In contrast, a film of palladium nano-particles (PdNPs), i.e., an MPfR, could the simultaneous reductions of TCA and TCE to mainly ethane, with only small amounts of intermediates: 1,1-dichloroethane (DCA) (~3% of total influent TCA and TCE) and MCA (~1%) in continuous operation. For aerobic oxidation, I enriched an ethanotrophic culture that could oxidize 1,4-D with ethane as the primary electron donor. An O2-based MBfR, inoculated with the enriched ethanotrophic culture, achieved over 99% 1,4-D removal with ethane as the primary electron donor in continuous operation. Finally, I evaluated two-stage treatment with a H2-based MPfR followed by an O2-MBfR. The two-stage system gave complete removal of TCA, TCE, and 1,4-D in continuous operation.
ContributorsLuo, Yihao (Author) / Rittmann, Bruce E. (Committee member) / Krajmalnik-Brown, Rosa (Committee member) / Zhou, Chen (Committee member) / Arizona State University (Publisher)
Created2018
155866-Thumbnail Image.png
Description
Activated Carbon has been used for decades to remove organics from water at large scale in municipal water treatment as well as at small scale in Point of Use (POU) and Point of Entry (POE) water treatment. This study focused on Granular Activated Carbon (GAC) and also activated Carbon Block

Activated Carbon has been used for decades to remove organics from water at large scale in municipal water treatment as well as at small scale in Point of Use (POU) and Point of Entry (POE) water treatment. This study focused on Granular Activated Carbon (GAC) and also activated Carbon Block (CB) were studied.

This thesis has three related elements for organics control in drinking water. First, coagulation chemistry for Alum and Aluminum Chlorohydrate (ACH) was optimized for significant organics removal to address membrane fouling issue at a local municipal water treatment plant in Arizona. Second, Rapid Small Scale Column Tests were conducted for removal of Perfluorinated compounds (PFC), PFC were present in groundwater at a local site in Arizona at trace levels with combined concentration of Perfluorooctaneoic Acid (PFOA) and Perfloorooctanesulfonic Acid (PFOS) up to 245 ng/L. Groundwater from the concerned site is used as drinking water source by a private utility. PFC Removal was evaluated for different GAC, influent concentrations and particle sizes. Third, a new testing protocol (Mini Carbon Block (MCB)) for bench scale study of POU water treatment device, specifically carbon block filter was developed and evaluated. The new bench scale decreased the hydraulic requirements by 60 times approximately, which increases the feasibility to test POU at a lab scale. It was evaluated for a common POU organic contaminant: Chloroform, and other model contaminants.

10 mg/L of ACH and 30 mg/L of Alum with pH adjustment were determined as optimal coagulant doses. Bituminous coal based GAC was almost three times better than coconut shell based GAC for removing PFC. Multiple tests with MCB suggested no short circuiting and consistent performance for methylene blue though chloroform removal tests underestimated full scale carbon block performance but all these tests creates a good theoretical and practical fundament for this new approach and provides directions for future researchers.
ContributorsAshani, Harsh Satishbhai (Author) / Westerhoff, Paul (Thesis advisor) / Hristovski, Kiril (Committee member) / Conroy-Ben, Otakuye (Committee member) / Arizona State University (Publisher)
Created2017
154278-Thumbnail Image.png
Description
Ion exchange sorbents embedded with metal oxide nanoparticles can have high affinity and high capacity to simultaneously remove multiple oxygenated anion contaminants from drinking water. This research pursued answering the question, “Can synthesis methods of nano-composite sorbents be improved to increase sustainability and feasibility to remove hexavalent chromium and arsenic

Ion exchange sorbents embedded with metal oxide nanoparticles can have high affinity and high capacity to simultaneously remove multiple oxygenated anion contaminants from drinking water. This research pursued answering the question, “Can synthesis methods of nano-composite sorbents be improved to increase sustainability and feasibility to remove hexavalent chromium and arsenic simultaneously from groundwater compared to existing sorbents?” Preliminary nano-composite sorbents outperformed existing sorbents in equilibrium tests, but struggled in packed bed applications and at low influent concentrations. The synthesis process was then tailored for weak base anion exchange (WBAX) while comparing titanium dioxide against iron hydroxide nanoparticles (Ti-WBAX and Fe-WBAX, respectively). Increasing metal precursor concentration increased the metal content of the created sorbents, but pollutant removal performance and usable surface area declined due to pore blockage and nanoparticle agglomeration. An acid-post rinse was required for Fe-WBAX to restore chromium removal capacity. Anticipatory life cycle assessment identified critical design constraints to improve environmental and human health performance like minimizing oven heating time, improving pollutant removal capacity, and efficiently reusing metal precursor solution. The life cycle environmental impact of Ti-WBAX was lower than Fe-WBAX as well as a mixed bed of WBAX and granular ferric hydroxide for all studied categories. A separate life cycle assessment found the total number of cancer and non-cancer cases prevented by drinking safer water outweighed those created by manufacture and use of water treatment materials and energy. However, treatment relocated who bore the health risk, concentrated it in a sub-population, and changed the primary manifestation from cancer to non-cancer disease. This tradeoff was partially mitigated by avoiding use of pH control chemicals. When properly synthesized, Fe-WBAX and Ti-WBAX sorbents maintained chromium removal capacity while significantly increasing arsenic removal capacity compared to the parent resin. The hybrid sorbent performance was demonstrated in packed beds using a challenging water matrix and low pollutant influent conditions. Breakthrough curves hint that the hexavalent chromium is removed by anion exchange and the arsenic is removed by metal oxide sorption. Overall, the hybrid nano-sorbent synthesis methods increased sustainability, improved sorbent characteristics, and increased simultaneous removal of chromium and arsenic for drinking water.
ContributorsGifford, James McKay (Author) / Westerhoff, Paul (Thesis advisor) / Hristovski, Kiril (Thesis advisor) / Chester, Mikhail (Committee member) / Arizona State University (Publisher)
Created2016