Matching Items (15)
Filtering by

Clear all filters

152129-Thumbnail Image.png
Description
The objective of this research is to investigate the relationship among key process design variables associated with the development of nanoscale electrospun polymeric scaffolds capable of tissue regeneration. To date, there has been no systematic approach toward understanding electrospinning process parameters responsible for the production of 3-D nanoscaffold architectures with

The objective of this research is to investigate the relationship among key process design variables associated with the development of nanoscale electrospun polymeric scaffolds capable of tissue regeneration. To date, there has been no systematic approach toward understanding electrospinning process parameters responsible for the production of 3-D nanoscaffold architectures with desired levels quality assurance envisioned to satisfy emerging regenerative medicine market needs. , As such, this study encompassed a more systematic, rational design of experiment (DOE) approach toward the identification of electrospinning process conditions responsible for the production of dextran-polyacrylic acid (DEX-PAA) nanoscaffolds with desired architectures and tissue engineering properties. The latter includes scaffold fiber diameter, pore size, porosity, and degree of crosslinking that together can provide a range of scaffold nanomechanical properties that closely mimics the cell microenvironment. The results obtained from this preliminary DOE study indicate that there exist electrospinning operation conditions capable of producing Dex-PAA nanoarchitecture having potential utility for regenerative medicine applications.
ContributorsEspinoza, Roberta (Author) / Pizziconi, Vincent (Thesis advisor) / Massia, Stephen (Committee member) / Garcia, Antonio (Committee member) / Arizona State University (Publisher)
Created2013
152472-Thumbnail Image.png
Description
ABSTRACT Electronics especially mobile electronics such as smart phones, tablet PCs, notebooks and digital cameras are undergoing rapid development nowadays and have thoroughly changed our lives. With the requirement of more transistors, higher power, smaller size, lighter weight and even bendability, thermal management of these devices became one of the

ABSTRACT Electronics especially mobile electronics such as smart phones, tablet PCs, notebooks and digital cameras are undergoing rapid development nowadays and have thoroughly changed our lives. With the requirement of more transistors, higher power, smaller size, lighter weight and even bendability, thermal management of these devices became one of the key challenges. Compared to active heat management system, heat pipe, which is a passive fluidic system, is considered promising to solve this problem. However, traditional heat pipes have size, weight and capillary limitation. Thus new type of heat pipe with smaller size, lighter weight and higher capillary pressure is needed. Nanofiber has been proved with superior properties and has been applied in multiple areas. This study discussed the possibility of applying nanofiber in heat pipe as new wick structure. In this study, a needleless electrospinning device with high productivity rate was built onsite to systematically investigate the effect of processing parameters on fiber properties as well as to generate nanofiber mat to evaluate its capability in electronics cooling. Polyethylene oxide (PEO) and Polyvinyl Alcohol (PVA) nanofibers were generated. Tensiometer was used for wettability measurement. The results show that independent parameters including spinneret type, working distance, solution concentration and polymer type are strongly correlated with fiber morphology compared to other parameters. The results also show that the fabricated nanofiber mat has high capillary pressure.
ContributorsSun, Tianwei (Author) / Jiang, Hanqing (Thesis advisor) / Yu, Hongyu (Committee member) / Chen, Kangping (Committee member) / Arizona State University (Publisher)
Created2014
152914-Thumbnail Image.png
Description
The objective of this research is to develop a biocompatible scaffold based on dextran and poly acrylic acid (PAA) with the potential to be used for soft tissue repair. In this thesis, physical and chemical properties of the scaffold were investigated. The scaffolds were made using electrospinning and cross-linked under

The objective of this research is to develop a biocompatible scaffold based on dextran and poly acrylic acid (PAA) with the potential to be used for soft tissue repair. In this thesis, physical and chemical properties of the scaffold were investigated. The scaffolds were made using electrospinning and cross-linked under high temperature. After heat treatment, Scanning Electron Microscope (SEM) was used to observe the structures of these scaffolds. Fourier transform infrared spectroscopy (FTIR) was used to measure the cross-linking level of scaffold samples given different times of heat treatment by detecting and comparing the newly formed ester bonds. Single-walled carbon nanotubes (SWCNT) were added to enhance the mechanical properties of dextran-PAA scaffolds. Attachment of NIH-3T3 fibroblast cells to the scaffold and the response upon implantation into rabbit vaginal tissue were also evaluated to investigate the performance of SWCNT dextran-PAA scaffold. SEM was then used to characterize morphology of fibroblast cells and rabbit tissues. The results suggest that SWCNT could enhance cell attachment, distribution and spreading performance of dextran-PAA scaffold.
ContributorsLiu, Chongji (Author) / Massia, Stephen (Thesis advisor) / Pizziconi, Vincent (Committee member) / Pauken, Christine (Committee member) / Arizona State University (Publisher)
Created2014
149782-Thumbnail Image.png
Description
In this work, a novel method is developed for making nano- and micro- fibrous hydrogels capable of preventing the rejection of implanted materials. This is achieved by either (1) mimicking the native cellular environment, to exert fine control over the cellular response or (2) acting as a protective barrier, to

In this work, a novel method is developed for making nano- and micro- fibrous hydrogels capable of preventing the rejection of implanted materials. This is achieved by either (1) mimicking the native cellular environment, to exert fine control over the cellular response or (2) acting as a protective barrier, to camouflage the foreign nature of a material and evade recognition by the immune system. Comprehensive characterization and in vitro studies described here provide a foundation for developing substrates for use in clinical applications. Hydrogel dextran and poly(acrylic acid) (PAA) fibers are formed via electrospinning, in sizes ranging from nanometers to microns in diameter. While "as-electrospun" fibers are continuous in length, sonication is used to fragment fibers into short fiber "bristles" and generate nano- and micro- fibrous surface coatings over a wide range of topographies. Dex-PAA fibrous surfaces are chemically modified, and then optimized and characterized for non-fouling and ECM-mimetic properties. The non-fouling nature of fibers is verified, and cell culture studies show differential responses dependent upon chemical, topographical and mechanical properties. Dex-PAA fibers are advantageously unique in that (1) a fine degree of control is possible over three significant parameters critical for modifying cellular response: topography, chemistry and mechanical properties, over a range emulating that of native cellular environments, (2) the innate nature of the material is non-fouling, providing an inert background for adding back specific bioactive functionality, and (3) the fibers can be applied as a surface coating or comprise the scaffold itself. This is the first reported work of dex-PAA hydrogel fibers formed via electrospinning and thermal cross-linking, and unique to this method, no toxic solvents or cross-linking agents are needed to create hydrogels or for surface attachment. This is also the first reported work of using sonication to fragment electrospun hydrogel fibers, and in which surface coatings were made via simple electrostatic interaction and dehydration. These versatile features enable fibrous surface coatings to be applied to virtually any material. Results of this research broadly impact the design of biomaterials which contact cells in the body by directing the consequent cell-material interaction.
ContributorsLouie, Katherine BoYook (Author) / Massia, Stephen P (Thesis advisor) / Bennett, Kevin (Committee member) / Garcia, Antonio (Committee member) / Pauken, Christine (Committee member) / Vernon, Brent (Committee member) / Arizona State University (Publisher)
Created2011
153798-Thumbnail Image.png
Description
Nanotechnology is becoming increasingly present in our environment. Engineered nanoparticles (ENPs), defined as objects that measure less than 100 nanometers in at least one dimension, are being integrated into commercial products because of their small size, increased surface area, and quantum effects. These special properties have made ENPs antimicrobial agents

Nanotechnology is becoming increasingly present in our environment. Engineered nanoparticles (ENPs), defined as objects that measure less than 100 nanometers in at least one dimension, are being integrated into commercial products because of their small size, increased surface area, and quantum effects. These special properties have made ENPs antimicrobial agents in clothing and plastics, among other applications in industries such as pharmaceuticals, renewable energy, and prosthetics. This thesis incorporates investigations into both application of nanoparticles into polymers as well as implications of nanoparticle release into the environment. First, the integration of ENPs into polymer fibers via electrospinning was explored. Electrospinning uses an external electric field applied to a polymer solution to produce continuous fibers with large surface area and small volume, a quality which makes the fibers ideal for water and air purification purposes. Indium oxide and titanium dioxide nanoparticles were embedded in polyvinylpyrrolidone and polystyrene. Viscosity, critical voltage, and diameter of electrospun fibers were analyzed in order to determine the effects of nanoparticle integration into the polymers. Critical voltage and viscosity of solution increased at 5 wt% ENP concentration. Fiber morphology was not found to change significantly as a direct effect of ENP addition, but as an effect of increased viscosity and surface tension. These results indicate the possibility for seamless integration of ENPs into electrospun polymers. Implications of ENP release were investigated using phase distribution functional assays of nanoscale silver and silver sulfide, as well as photolysis experiments of nanoscale titanium dioxide to quantify hydroxyl radical production. Functional assays are a means of screening the relevant importance of multiple processes in the environmental fate and transport of ENPs. Four functional assays – water-soil, water-octanol, water-wastewater sludge and water-surfactant – were used to compare concentrations of silver sulfide ENPs (Ag2S-NP) and silver ENPs (AgNP) capped by four different coatings. The functional assays resulted in reproducible experiments which clearly showed variations between nanoparticle phase distributions; the findings may be a product of the effects of the different coatings of the ENPs used. In addition to phase distribution experiments, the production of hydroxyl radical (HO•) by nanoscale titanium dioxide (TiO2) under simulated solar irradiation was investigated. Hydroxyl radical are a short-lived, highly reactive species produced by solar radiation in aquatic environments that affect ecosystem function and degrades pollutants. HO• is produced by photolysis of TiO2 and nitrate (NO3-); these two species were used in photolysis experiments to compare the relative loads of hydroxyl radical which nanoscale TiO2 may add upon release to natural waters. Para-chlorobenzoic acid (pCBA) was used as a probe. Measured rates of pCBA oxidation in the presence of various concentrations of TiO2 nanoparticles and NO3- were utilized to calculate pseudo first order rate constants. Results indicate that, on a mass concentration basis in water, TiO2 produces hydroxyl radical steady state concentrations at 1.3 times more than the equivalent amount of NO3-; however, TiO2 concentrations are generally less than one order of magnitude lower than concentrations of NO3-. This has implications for natural waterways as the amount of nanoscale TiO2 released from consumer products into natural waterways increases in proportion to its use.
ContributorsHoogesteijn von Reitzenstein, Natalia (Author) / Westerhoff, Paul (Thesis advisor) / Herckes, Pierre (Committee member) / Hristovski, Kiril (Committee member) / Arizona State University (Publisher)
Created2015
156654-Thumbnail Image.png
Description
Electrospinning is a means of fabricating micron-scale diameter fiber networks with enmeshed nanomaterials. Polymeric nanocomposites for water treatment require the manipulation of fiber morphology to expose nanomaterial surface area while anchoring the nanomaterials and maintaining fiber integrity; that is the overarching goal of this dissertation. The first investigation studied the

Electrospinning is a means of fabricating micron-scale diameter fiber networks with enmeshed nanomaterials. Polymeric nanocomposites for water treatment require the manipulation of fiber morphology to expose nanomaterial surface area while anchoring the nanomaterials and maintaining fiber integrity; that is the overarching goal of this dissertation. The first investigation studied the effect of metal oxide nanomaterial loadings on electrospinning process parameters such as critical voltage, viscosity, fiber diameter, and nanomaterial distribution. Increases in nanomaterial loading below 5% (w/v) were not found to affect critical voltage or fiber diameter. Nanomaterial dispersion was conserved throughout the process. Arsenic adsorption tests determined that the fibers were non-porous. Next, the morphologies of fibers made with carbonaceous materials and the effect of final fiber assembly on adsorption kinetics of a model organic contaminant (phenanthrene, PNT) was investigated. Superfine powdered activated carbon (SPAC), C60 fullerenes, multi-walled carbon nanotubes, and graphene platelets were added to PS and electrospun. SPAC maintained its internal pore structure and created porous fibers which had 30% greater PNT sorption than PS alone and a sevenfold increase in surface area. Carbon-based nanomaterial-PS fibers were thicker but less capacious than neat polystyrene electrospun fibers. The surface areas of the carbonaceous nanomaterial-polystyrene composites decreased compared to neat PS, and PNT adsorption experiments yielded decreased capacity for two out of three carbonaceous nanomaterials. Finally, the morphology and arsenic adsorption capacity of a porous TiO2-PS porous fiber was investigated. Porous fiber was made using polyvinylpyrrolidone (PVP) as a porogen. PVP, PS, and TiO2 were co-spun and the PVP was subsequently eliminated, leaving behind a porous fiber morphology which increased the surface area of the fiber sevenfold and exposed the nanoscale TiO2 enmeshed inside the PS. TiO2-PS fibers had comparable arsenic adsorption performance to non-embedded TiO2 despite containing less TiO2 mass. The use of a sacrificial polymer as a porogen facilitates the creation of a fiber morphology which provides access points between the target pollutant in an aqueous matrix and the sorptive nanomaterials enmeshed inside the fiber while anchoring the nanomaterials, thus preventing release.
ContributorsHoogesteijn von Reitzenstein, Natalia Virginia (Author) / Westerhoff, Paul (Thesis advisor) / Hristovski, Kiril (Committee member) / Perreault, Francois (Committee member) / Herckes, Pierre (Committee member) / Arizona State University (Publisher)
Created2018
134755-Thumbnail Image.png
Description
The objective of this research is to create biodegradable mats with tunable characteristics such as fiber diameter and surface area. The drug delivery mats enable spatially controlled delivery of disease-specific therapeutics. Using a large electric potential to draw fibers from a solution flowing at a specific rate, the polymer

The objective of this research is to create biodegradable mats with tunable characteristics such as fiber diameter and surface area. The drug delivery mats enable spatially controlled delivery of disease-specific therapeutics. Using a large electric potential to draw fibers from a solution flowing at a specific rate, the polymer fibers reach a grounded target several inches away. The biodegradable polymer used in this study was poly(lactic acid-co-glycolic acid) (PLGA). PLGA solutions ranging from 0.5 to 27 wt.% were prepared by dissolving the block copolymer in a solvent mixture containing tetrahydrofuran (THF) and dimethylformamide (DMF) at a 3:1 weight ratio. They were then electrospun at needle-to-target distances of 7, 14, and 18 cm and rates ranging from 0.8 to 4 mL/h. The range of voltage used was between 8 – 15 kV, which was based on the observation of the formation of a Taylor cone, largely affected by on the environment and weather (e.g., temperature and humidity in the lab). A 27 wt.% PLGA solution, electrospun at 1 mL/h at a voltage of 11.25 kV and needle-to-target distance of 14 cm produced uniform fibers with an average fiber diameter of 0.985 m. All other parameters outside the range given created beaded fibers. In addition, solution rheology was performed on some of the PLGA solution to measure viscosity, which is directly correlated to the fiber diameter of the electrospun mats. Observing the impact of solvent on fiber spinning and fiber diameter brings about many positive results in developing fully characterized and well-understood fibrous mats for drug delivery. The nanoscale fibers will be used as drug delivery mats and, therefore, the biodegradation kinetics of the polymers will be studied. Next, parameters of the polymers as well as the polymeric mats will be correlated to the degradation-mediated release of small molecule therapeutics (e.g., peptides, drugs, etc.) such that time-resolved dosing profiles can be created.
ContributorsLent, Madeline (Author) / Green, Matthew (Thesis director) / Holloway, Julianne (Committee member) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
133303-Thumbnail Image.png
Description
Heterogeneous tissues are composed of chemical and physical gradients responsible for transferring load from one tissue type to another, through the thickness or the length of the tissue. Musculoskeletal tissues include these junctions, such as the tendon-bone and ligament-bone, which consist of an alignment gradient through the length of the

Heterogeneous tissues are composed of chemical and physical gradients responsible for transferring load from one tissue type to another, through the thickness or the length of the tissue. Musculoskeletal tissues include these junctions, such as the tendon-bone and ligament-bone, which consist of an alignment gradient through the length of the interfacial regions. These junctions are imperative for transferring mechanical loadings between dissimilar tissues. Engineering a proper scaffold that mimics the native architecture of these tissues to prompt proper repair after an interfacial injury has been difficult to fabricate within tissue engineering. Electrospinning is a common technique for fabricating nanofibrous scaffolds that can mimic the structure of the native extracellular matrix (ECM). However, current electrospinning techniques do not easily allow for the replication of the chemical and physical gradients present in musculoskeletal interfacial tissues. In this work, a novel magnetic electrospinning technique was developed to fabricate polycaprolactone (PCL) nanofibrous scaffolds that recapitulate the gradient alignment structure of the tendon-bone junction. When exposed to the natural magnetic field from a permanent magnet, PCL fibers innately aligned near the magnet with unalignment at distances further away from the magnetic field.
ContributorsGualtieri, Alessandra Villa (Author) / Holloway, Julianne (Thesis director) / Green, Matthew (Committee member) / Chemical Engineering (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
133064-Thumbnail Image.png
Description
Obtaining access to clean water is a global problem that is becoming more important with increasing population and advancing technology. Desalination through reverse osmosis (RO) is a promising technology takes advantage of the global supply of saline water to augment its limited freshwater reservoirs. To increase RO membrane performance, the

Obtaining access to clean water is a global problem that is becoming more important with increasing population and advancing technology. Desalination through reverse osmosis (RO) is a promising technology takes advantage of the global supply of saline water to augment its limited freshwater reservoirs. To increase RO membrane performance, the feedwater is pretreated to take any excess pollutants out before the desalination. These pretreatment membranes are susceptible to fouling, which reduces efficiency and drives up costs of the overall process. Increasing the hydrophilicity of these membranes would reduce fouling, and electrospinning is a production method of pretreatment membranes with the capability to control hydrophilicity. This work explores how the composition of electrospun fibrous membranes containing blends of hydrophilic and hydrophobic polymers affects membrane characteristics such as wettability as well as filtration performance. Nonwoven, nanoscale membranes were prepared using electrospinning with a targeted application of pretreatment in water filtration. Using a rotating collector, electrospun mats of hydrophobic poly(vinyl chloride) (PVC) and hydrophilic poly(vinyl alcohol) (PVA) were simultaneously deposited from separate polymer solutions, and their polymer compositions were then characterized using Fourier Transform Infrared (FTIR) spectra. The data did not reveal a reliable correlation established between experimental control variables like flow rate and membrane composition. However, when the membranes' hydrophilicity was analyzed using static water contact angle measurements, a trend between PVA content and hydrophilicity was seen. This shows that the hypothesis of increasing PVA content to increase hydrophilicity is reliable, but with the current experimental design the PVA content is not controllable. Therefore, the primary future work is making a new experimental setup that will be able to better control membrane composition. Filtration studies to test for fouling and size exclusion will be performed once this control is obtained.
ContributorsTronstad, Zachary (Author) / Green, Matthew (Thesis director) / Holloway, Julianne (Committee member) / Epps, Thomas (Committee member) / Chemical Engineering Program (Contributor) / Materials Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-12
137835-Thumbnail Image.png
Description
Electrospun nanofibers can be prepared from various kinds of inorganic substances by electro-spinning techniques. They have great potential in many applications including super capacitors, lithium ion batteries, filtration, catalyst and enzyme carriers, and sensors [1]. The traditional way to produce electrospun nanofibers is needle based electro-spinning [1]. However, electrospun nanofibers

Electrospun nanofibers can be prepared from various kinds of inorganic substances by electro-spinning techniques. They have great potential in many applications including super capacitors, lithium ion batteries, filtration, catalyst and enzyme carriers, and sensors [1]. The traditional way to produce electrospun nanofibers is needle based electro-spinning [1]. However, electrospun nanofibers have not been widely used in practice because of low nanofiber production rates. One way to largely increase the electro-spinning productivity is needleless electro-spinning. In 2005, Jirsak et al. patented a rotating roller fiber generator for the mass production of nanofibers [2]. Elmarco Corporation commercialized this technique to manufacture nanofiber equipment for the production of all sorts of organic and inorganic nanofibers, and named it "NanospiderTM". For this project, my goal is to build a needleless electro-spinner to produce nanofibers as the separator of lithium ion batteries. The model of this project is based on the design of rotating roller fiber generator, and is adapted from a project at North Dakota State University in 2011 [3].
ContributorsQiao, Guanhao (Author) / Yu, Hongyu (Thesis director) / Jiang, Hanqing (Committee member) / Goryll, Michael (Committee member) / Barrett, The Honors College (Contributor) / Ira A. Fulton School of Engineering (Contributor)
Created2012-12