Matching Items (2)
Filtering by

Clear all filters

134518-Thumbnail Image.png
Description
This study details the construction and operation of a dry-jet wet spinning apparatus for extruding hollow fiber membranes (HFMs). The main components of the apparatus are a spinneret, a coagulation bath, and an automatic collection reel. Continuous fiber formation was achieved using two syringe pumps simultaneously delivering polymer dope and

This study details the construction and operation of a dry-jet wet spinning apparatus for extruding hollow fiber membranes (HFMs). The main components of the apparatus are a spinneret, a coagulation bath, and an automatic collection reel. Continuous fiber formation was achieved using two syringe pumps simultaneously delivering polymer dope and bore fluid to the spinneret. Based on apparatus runs performed with Polysulfone (PSF) dopes dissolved in N,N-Dimethylacetamide and supporting rheological analysis, the entanglement concentration, ce, was identified as a minimum processing threshold for creating HFMs. Similarly, significant increases in the ultimate tensile strength, fracture strain, and Young's modulus for extruded HFMs were observed as polymer dope concentration was increased at levels near ce. Beyond this initial increase, subsequent tests at higher PSF concentrations yielded diminishing changes in mechanical properties, suggesting an asymptotic approach to a point where the trend would cease. Without further research, it is theorized that this point falls on a transition from the semidiute entangled to concentrated concentration regimes. SEM imaging of samples revealed the formation of grooved structures on the inner surface of samples, which was determined to be a result of the low flowrate and polymer dope concentrations used in processing the HFMs during apparatus runs. Based on continued operation of the preliminary apparatus design, many areas of improvement were noted. Namely, these consisted of controlling the collector speed, eliminating rubbing of nascent fibers against the edge of the coagulation bath by installing an elevated roller, and replacing tygon tubing for the polymer line with a luer lock adapter for direct syringe attachment to the spinneret.
ContributorsBridge, Alexander Thomas (Author) / Green, Matthew D. (Thesis director) / Lin, Jerry Y. S. (Committee member) / School of Mathematical and Statistical Sciences (Contributor) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
135478-Thumbnail Image.png
Description
The following thesis documents a two-fold approach to investigate challenges pertaining to water purification, first through a meta-analysis of ionic liquid toxicity, then through experimentation aimed at developing water pre-treatment membranes. Ionic liquids (ILs) are salts with low melting points, typically liquid at room temperature. Several extraordinary physical attributes, e.g.

The following thesis documents a two-fold approach to investigate challenges pertaining to water purification, first through a meta-analysis of ionic liquid toxicity, then through experimentation aimed at developing water pre-treatment membranes. Ionic liquids (ILs) are salts with low melting points, typically liquid at room temperature. Several extraordinary physical attributes, e.g. low viscosity, high conductivity, low to no vapor pressure, etc., and seemingly unlimited combinations available, have pushed IL research to the forefront of many research fronts. Concerns are raised as ionic liquids are rushed into commercial production without sufficient environmental regulation. Research has shown that the chemicals are in fact toxic, yet have developed a reputation for being “green” chemicals due to select physical attributes and applications. The meta-analysis discussed focuses on industry perception of ionic liquid toxicity through a patent review, and considers toxicity of ILs comparatively against other chemical families with well-established toxicity. The meta-analysis revealed that the total patent literature pertaining to ILs (n=3358) resulted in 112 patents that addressed the toxicity of ILs, and notably few (n=17) patents defined ILs as toxic, representing only 0.51% of the evaluated body of work on intellectual property claims. Additionally, toxicity of ionic liquids is comparable to that of other chemical families.
The objective of the experimentation was to explore the effect of crosslinker chain length on the morphology of nanofiber mats. Specifically, poly(vinyl alcohol (PVA) was electrospun into nanofiber mats and poly(ethylene) glycol bis(carboxylic acid) (PEG diacid) was used as the crosslinking agent. As-spun fibers had average fiber diameter of 70 ± 30 nm with an average pore size of 0.10 ± 0.16 μm^2. The fiber diameter for the mats crosslinked with the shorter PEG diacid (Mn = 250) increased to 110 ± 40 nm with an average pore size of 0.11 ± 0.04 μm^2. The mats crosslinked with the longer PEG diacid (Mn = 600) had fiber diameters of 180 ± 10 nm with an average pore size 0.01 ± 0.02 μm^2.
ContributorsRomero, Felicia Navidad (Author) / Green, Matthew D. (Thesis director) / Lind, Mary Laura (Committee member) / Long, Timothy E. (Committee member) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05