Matching Items (14)
Filtering by

Clear all filters

133722-Thumbnail Image.png
Description
One of the primary bottlenecks to chemical production in biological organisms is the toxicity of the chemical. Overexpression of efflux pumps has been shown to increase tolerance to aromatic compounds such as styrene and styrene oxide. Tight control of pump expression is necessary to maximize titers and prevent excessive strain

One of the primary bottlenecks to chemical production in biological organisms is the toxicity of the chemical. Overexpression of efflux pumps has been shown to increase tolerance to aromatic compounds such as styrene and styrene oxide. Tight control of pump expression is necessary to maximize titers and prevent excessive strain on the cells. This study aimed to identify aromatic-sensitive native promoters and heterologous biosensors for construction of closed-loop control of efflux pump expression in E. coli. Using a promoter library constructed by Zaslaver et al., activation was measured through GFP output. Promoters were evaluated for their sensitivity to the addition of one of four aromatic compounds, their "leaking" of signal, and their induction threshold. Out of 43 targeted promoters, 4 promoters (cmr, mdtG, yahN, yajR) for styrene oxide, 2 promoters (mdtG, yahN) for styrene, 0 promoters for 2-phenylethanol, and 1 promoter for phenol (pheP) were identified as ideal control elements in aromatic bioproduction. In addition, a series of three biosensors (NahR, XylS, DmpR) known to be inducible by other aromatics were screened against styrene oxide, 2-phenylethanol, and phenol. The targeted application of these biosensors is aromatic-induced activation of linked efflux pumps. All three biosensors responded strongly in the presence of styrene oxide and 2-phenylethanol, with minor activation in the presence of phenol. Bioproduction of aromatics continues to gain traction in the biotechnology industry, and the continued discovery of aromatic-inducible elements will be essential to effective pathway control.
ContributorsXu, Jimmy (Author) / Nielsen, David (Thesis director) / Wang, Xuan (Committee member) / School of Life Sciences (Contributor) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
134755-Thumbnail Image.png
Description
The objective of this research is to create biodegradable mats with tunable characteristics such as fiber diameter and surface area. The drug delivery mats enable spatially controlled delivery of disease-specific therapeutics. Using a large electric potential to draw fibers from a solution flowing at a specific rate, the polymer

The objective of this research is to create biodegradable mats with tunable characteristics such as fiber diameter and surface area. The drug delivery mats enable spatially controlled delivery of disease-specific therapeutics. Using a large electric potential to draw fibers from a solution flowing at a specific rate, the polymer fibers reach a grounded target several inches away. The biodegradable polymer used in this study was poly(lactic acid-co-glycolic acid) (PLGA). PLGA solutions ranging from 0.5 to 27 wt.% were prepared by dissolving the block copolymer in a solvent mixture containing tetrahydrofuran (THF) and dimethylformamide (DMF) at a 3:1 weight ratio. They were then electrospun at needle-to-target distances of 7, 14, and 18 cm and rates ranging from 0.8 to 4 mL/h. The range of voltage used was between 8 – 15 kV, which was based on the observation of the formation of a Taylor cone, largely affected by on the environment and weather (e.g., temperature and humidity in the lab). A 27 wt.% PLGA solution, electrospun at 1 mL/h at a voltage of 11.25 kV and needle-to-target distance of 14 cm produced uniform fibers with an average fiber diameter of 0.985 m. All other parameters outside the range given created beaded fibers. In addition, solution rheology was performed on some of the PLGA solution to measure viscosity, which is directly correlated to the fiber diameter of the electrospun mats. Observing the impact of solvent on fiber spinning and fiber diameter brings about many positive results in developing fully characterized and well-understood fibrous mats for drug delivery. The nanoscale fibers will be used as drug delivery mats and, therefore, the biodegradation kinetics of the polymers will be studied. Next, parameters of the polymers as well as the polymeric mats will be correlated to the degradation-mediated release of small molecule therapeutics (e.g., peptides, drugs, etc.) such that time-resolved dosing profiles can be created.
ContributorsLent, Madeline (Author) / Green, Matthew (Thesis director) / Holloway, Julianne (Committee member) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
134704-Thumbnail Image.png
Description
p-Coumaric acid is used in the food, pharmaceutical, and cosmetic industries due to its versatile properties. While prevalent in nature, harvesting the compound from natural sources is inefficient, requiring large quantities of producing crops and numerous extraction and purification steps. Thus, the large-scale production of the compound is both difficult

p-Coumaric acid is used in the food, pharmaceutical, and cosmetic industries due to its versatile properties. While prevalent in nature, harvesting the compound from natural sources is inefficient, requiring large quantities of producing crops and numerous extraction and purification steps. Thus, the large-scale production of the compound is both difficult and costly. This research aims to produce p-coumarate directly from renewable and sustainable glucose using a co-culture of Yeast and E. Coli. Methods used in this study include: designing optimal media for mixed-species microbial growth, genetically engineering both strains to build the production pathway with maximum yield, and analyzing the presence of p-Coumarate and its pathway intermediates using High Performance Liquid Chromatography (HPLC). To date, the results of this project include successful integration of C4H activity into the yeast strain BY4741 ∆FDC1, yielding a strain that completely consumed trans-cinnamate (initial concentration of 50 mg/L) and produced ~56 mg/L p-coumarate, a resting cell assay of the co-culture that produced 0.23 mM p-coumarate from an initial L-Phenylalanine concentration of 1.14 mM, and toxicity tests that confirmed the toxicity of trans-cinnamate to yeast for concentrations above ~50 mg/L. The hope for this project is to create a feasible method for producing p-Coumarate sustainably.
ContributorsJohnson, Kaleigh Lynnae (Author) / Nielsen, David (Thesis director) / Thompson, Brian (Committee member) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
Description
This honors thesis is focused on two separate catalysis projects conducted under the mentorship of Dr. Javier Pérez-Ramírez at ETH Zürich. The first project explored ethylene oxychlorination over supported europium oxychloride catalysts. The second project investigated alkyne semihydrogenation over nickel phosphide catalysts. This work is the subject of a publication

This honors thesis is focused on two separate catalysis projects conducted under the mentorship of Dr. Javier Pérez-Ramírez at ETH Zürich. The first project explored ethylene oxychlorination over supported europium oxychloride catalysts. The second project investigated alkyne semihydrogenation over nickel phosphide catalysts. This work is the subject of a publication of which I am a co-author, as cited below.

Project 1 Abstract: Ethylene Oxychlorination
The current two-step process for the industrial process of vinyl chloride production involves CuCl2 catalyzed ethylene oxychlorination to ethylene dichloride followed by thermal cracking of the latter to vinyl chloride. To date, no industrial application of a one-step process is available. To close this gap, this work evaluates a wide range of self-prepared supported CeO2 and EuOCl catalysts for one-step production of vinyl chloride from ethylene in a fixed-bed reactor at 623 773 K and 1 bar using feed ratios of C2H4:HCl:O2:Ar:He = 3:3 6:1.5 6:3:82 89.5. Among all studied systems, CeO2/ZrO2 and CeO2/Zeolite MS show the highest activity but suffer from severe combustion of ethylene, forming COx, while 20 wt.% EuOCl/γ-Al2O3 leads to the best vinyl chloride selectivity of 87% at 15.6% C2H4 conversion with complete suppression of CO2 formation and only 4% selectivity to CO conversion for over 100 h on stream. Characterization by XRD and EDX mapping reveals that much of the Eu is present in non-active phases such as Al2Eu or EuAl4, indicating that alternative synthesis methods could be employed to better utilize the metal. A linear relationship between conversion and metal loading is found for this catalyst, indicating that always part of the used Eu is available as EuOCl, while the rest forms inactive europium aluminate species. Zeolite-supported EuOCl slightly outperforms EuOCl/γ Al2O3 in terms of total yield, but is prone to significant coking and is unstable. Even though a lot of Eu seems locked in inactive species on EuOCl/γ Al2O3, these results indicate possible savings of nearly 16,000 USD per kg of catalyst compared to a bulk EuOCl catalyst. These very promising findings constitute a crucial step for process intensification of polyvinyl chloride production and exploring the potential of supported EuOCl catalysts in industrially-relevant reactions.

Project 2 Abstract: Alkyne Semihydrogenation
Despite strongly suffering from poor noble metal utilization and a highly toxic selectivity modifier (Pb), the archetypal catalyst applied for the three-phase alkyne semihydrogenation, the Pb-doped Pd/CaCO3 (Lindlar catalyst), is still being utilized at industrial level. Inspired by the very recent strategies involving the modification of Pd with p-block elements (i.e., S), this work extrapolates the concept by preparing crystalline metal phosphides with controlled stoichiometry. To develop an affordable and environmentally-friendly alternative to traditional hydrogenation catalysts, nickel, a metal belonging to the same group as Pd and capable of splitting molecular hydrogen has been selected. Herein, a simple two-step synthesis procedure involving nontoxic precursors was used to synthesize bulk nickel phosphides with different stoichiometries (Ni2P, Ni5P4, and Ni12P5) by controlling the P:Ni ratios. To uncover structural and surface features, this catalyst family is characterized with an array of methods including X-ray diffraction (XRD), 31P magic-angle nuclear magnetic resonance (MAS-NMR) spectroscopy, and X-ray photoelectron spectroscopy (XPS). Bulk-sensitive techniques prove the successful preparation of pure phases while XPS analysis unravels the facile passivation occurring at the NixPy surface that persists even after reductive treatment. To assess the characteristic surface fingerprints of these materials, Ar sputtering was carried out at different penetration depths, reveling the presence of Ni+ and P-species. Continuous-flow three-phase hydrogenations of short-chain acetylenic compounds display that the oxidized layer covering the surface is reduced under reaction conditions, as evidenced by the induction period before reaching the steady state performance. To assess the impact of the phosphidation treatment on catalytic performance, the catalysts were benchmarked against a commercial Ni/SiO2-Al2O3 sample. While Ni/SiO2-Al2O3 presents very low selectivity to the alkene (the selectivity is about 10% at full conversion) attributed to the well-known tendency of naked nickel nanoparticles to form hydrides, the performance of nickel phosphides is highly selective and independent of P:Ni ratio. In line with previous findings on PdxS, kinetic tests indicate the occurrence of a dual-site mechanism where the alkyne and hydrogen do not compete for the same site.

This work is the subject of a publication of which I am a co-author, as cited below.

D. Albani; K. Karajovic; B. Tata; Q. Li; S. Mitchell; N. López; J. Pérez-Ramírez. Ensemble Design in Nickel Phosphide Catalysts for Alkyne Semi-Hydrogenation. ChemCatChem 2019. doi.org/10.1002/cctc.201801430
ContributorsTata, Bharath (Author) / Deng, Shuguang (Thesis director) / Muhich, Christopher (Committee member) / Chemical Engineering Program (Contributor, Contributor) / School of Sustainability (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
133064-Thumbnail Image.png
Description
Obtaining access to clean water is a global problem that is becoming more important with increasing population and advancing technology. Desalination through reverse osmosis (RO) is a promising technology takes advantage of the global supply of saline water to augment its limited freshwater reservoirs. To increase RO membrane performance, the

Obtaining access to clean water is a global problem that is becoming more important with increasing population and advancing technology. Desalination through reverse osmosis (RO) is a promising technology takes advantage of the global supply of saline water to augment its limited freshwater reservoirs. To increase RO membrane performance, the feedwater is pretreated to take any excess pollutants out before the desalination. These pretreatment membranes are susceptible to fouling, which reduces efficiency and drives up costs of the overall process. Increasing the hydrophilicity of these membranes would reduce fouling, and electrospinning is a production method of pretreatment membranes with the capability to control hydrophilicity. This work explores how the composition of electrospun fibrous membranes containing blends of hydrophilic and hydrophobic polymers affects membrane characteristics such as wettability as well as filtration performance. Nonwoven, nanoscale membranes were prepared using electrospinning with a targeted application of pretreatment in water filtration. Using a rotating collector, electrospun mats of hydrophobic poly(vinyl chloride) (PVC) and hydrophilic poly(vinyl alcohol) (PVA) were simultaneously deposited from separate polymer solutions, and their polymer compositions were then characterized using Fourier Transform Infrared (FTIR) spectra. The data did not reveal a reliable correlation established between experimental control variables like flow rate and membrane composition. However, when the membranes' hydrophilicity was analyzed using static water contact angle measurements, a trend between PVA content and hydrophilicity was seen. This shows that the hypothesis of increasing PVA content to increase hydrophilicity is reliable, but with the current experimental design the PVA content is not controllable. Therefore, the primary future work is making a new experimental setup that will be able to better control membrane composition. Filtration studies to test for fouling and size exclusion will be performed once this control is obtained.
ContributorsTronstad, Zachary (Author) / Green, Matthew (Thesis director) / Holloway, Julianne (Committee member) / Epps, Thomas (Committee member) / Chemical Engineering Program (Contributor) / Materials Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-12
133504-Thumbnail Image.png
Description
Escherichia coli is a bacterium that is used widely in metabolic engineering due to its ability to grow at a fast rate and to be cultured easily. E. coli can be engineered to produce many valuable chemicals, including biofuels and L-Phenylalanine—a precursor to many pharmaceuticals. Significant cell growth occurs in

Escherichia coli is a bacterium that is used widely in metabolic engineering due to its ability to grow at a fast rate and to be cultured easily. E. coli can be engineered to produce many valuable chemicals, including biofuels and L-Phenylalanine—a precursor to many pharmaceuticals. Significant cell growth occurs in parallel to the biosynthesis of the desired biofuel or biochemical product, and limits product concentrations and yields. Stopping cell growth can improve chemical production since more resources will go toward chemical production than toward biomass. The goal of the project is to test different methods of controlling microbial uptake of nutrients, specifically phosphate, to dynamically limit cell growth and improve biochemical production of E. coli, and the research has the potential to promote public health, sustainability, and environment. This can be achieved by targeting phosphate transporter genes using CRISPRi and CRISPR, and they will limit the uptake of phosphate by targeting the phosphate transporter genes in DNA, which will stop transcriptions of the genes. In the experiment, NST74∆crr∆pykAF, a L-Phe overproducer, was used as the base strain, and the pitA phosphate transporter gene was targeted in the CRISPRi and CRISPR systems with the strain with other phosphate transporters knocked out. The tested CRISPRi and CRISPR mechanisms did not stop cell growth or improved L-Phe production. Further research will be conducted to determine the problem of the system. In addition, the CRISPRi and CRISPR systems that target multiple phosphate transporter genes will be tested in the future as well as the other method of stopping transcriptions of the phosphate transporter genes, which is called a tunable toggle switch mechanism.
ContributorsPark, Min Su (Author) / Nielsen, David (Thesis director) / Machas, Michael (Committee member) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
135478-Thumbnail Image.png
Description
The following thesis documents a two-fold approach to investigate challenges pertaining to water purification, first through a meta-analysis of ionic liquid toxicity, then through experimentation aimed at developing water pre-treatment membranes. Ionic liquids (ILs) are salts with low melting points, typically liquid at room temperature. Several extraordinary physical attributes, e.g.

The following thesis documents a two-fold approach to investigate challenges pertaining to water purification, first through a meta-analysis of ionic liquid toxicity, then through experimentation aimed at developing water pre-treatment membranes. Ionic liquids (ILs) are salts with low melting points, typically liquid at room temperature. Several extraordinary physical attributes, e.g. low viscosity, high conductivity, low to no vapor pressure, etc., and seemingly unlimited combinations available, have pushed IL research to the forefront of many research fronts. Concerns are raised as ionic liquids are rushed into commercial production without sufficient environmental regulation. Research has shown that the chemicals are in fact toxic, yet have developed a reputation for being “green” chemicals due to select physical attributes and applications. The meta-analysis discussed focuses on industry perception of ionic liquid toxicity through a patent review, and considers toxicity of ILs comparatively against other chemical families with well-established toxicity. The meta-analysis revealed that the total patent literature pertaining to ILs (n=3358) resulted in 112 patents that addressed the toxicity of ILs, and notably few (n=17) patents defined ILs as toxic, representing only 0.51% of the evaluated body of work on intellectual property claims. Additionally, toxicity of ionic liquids is comparable to that of other chemical families.
The objective of the experimentation was to explore the effect of crosslinker chain length on the morphology of nanofiber mats. Specifically, poly(vinyl alcohol (PVA) was electrospun into nanofiber mats and poly(ethylene) glycol bis(carboxylic acid) (PEG diacid) was used as the crosslinking agent. As-spun fibers had average fiber diameter of 70 ± 30 nm with an average pore size of 0.10 ± 0.16 μm^2. The fiber diameter for the mats crosslinked with the shorter PEG diacid (Mn = 250) increased to 110 ± 40 nm with an average pore size of 0.11 ± 0.04 μm^2. The mats crosslinked with the longer PEG diacid (Mn = 600) had fiber diameters of 180 ± 10 nm with an average pore size 0.01 ± 0.02 μm^2.
ContributorsRomero, Felicia Navidad (Author) / Green, Matthew D. (Thesis director) / Lind, Mary Laura (Committee member) / Long, Timothy E. (Committee member) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
148490-Thumbnail Image.png
Description

Lignin is a naturally abundant source of aromatic carbon but is largely underutilized in industry because it is difficult to decompose. Under the current study we engineered Corynebacterium glutamicum for the depolymerization of lignin with the goal of using it as raw feed for the sustainable production of valuable chemicals.

Lignin is a naturally abundant source of aromatic carbon but is largely underutilized in industry because it is difficult to decompose. Under the current study we engineered Corynebacterium glutamicum for the depolymerization of lignin with the goal of using it as raw feed for the sustainable production of valuable chemicals. C. glutamicum is a standout candidate for the depolymerization and assimilation of lignin because of its performance as an industrial producer of amino acids, resistance to aromatic compounds in lignin, and low extracellular protease activity. Three different foreign and native ligninolytic enzymes were tested in combination with three signal peptides to assess lignin degradation efficacy. At this stage, six of the nine plasmid constructs have been constructed.

ContributorsEllis, Dylan Scott (Author) / Varman, Arul Mozhy (Thesis director) / Nannenga, Brent (Committee member) / Nowroozi, Farnaz (Committee member) / Chemical Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
132166-Thumbnail Image.png
Description
Due to the wide range of health properties flavonoids possess, flavonoids are sold in health supplements to the general public. Flavonoids are also utilized in research but have a high cost due to current production techniques. This project focuses on engineering two DNA recombinants to develop new strains of Corynebacterium

Due to the wide range of health properties flavonoids possess, flavonoids are sold in health supplements to the general public. Flavonoids are also utilized in research but have a high cost due to current production techniques. This project focuses on engineering two DNA recombinants to develop new strains of Corynebacterium glutamicum that can produce flavonoids pinocembrin and naringenin. After culturing Escherichia coli colonies containing genes of interest, the genes were collected and purified by PCR reactions. The recombinant plasmid was assembled using CPEC and successfully transformed into Escherichia coli, with plans to transform Corynebacterium glutamicum to experiment and determine which recombinant can produce more pinocembrin and naringenin. Design work for other DNA recombinants, which were not the focus of this project, was also completed.
ContributorsWong, Adam (Co-author, Co-author) / Varman, Arul Mozhy (Thesis director) / Nielsen, David (Committee member) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
131771-Thumbnail Image.png
Description
Cyanobacteria have the potential to efficiently produce L-serine, an industrially important amino acid, directly from CO2 and sunlight, which is a more sustainable and inexpensive source of energy as compared to current methods. The research aims to engineer a strain of Cyanobacterium Synechococcus sp. PCC 7002 that increases L-serine production

Cyanobacteria have the potential to efficiently produce L-serine, an industrially important amino acid, directly from CO2 and sunlight, which is a more sustainable and inexpensive source of energy as compared to current methods. The research aims to engineer a strain of Cyanobacterium Synechococcus sp. PCC 7002 that increases L-serine production by mutating regulatory mechanisms that natively inhibit its production and encoding an exporter. While an excess of L-serine was not found in the supernatant of the cell cultures, with further fine tuning of the metabolic pathway and culture conditions, high titers of L-serine can be found. With the base strain engineered, the work can be extended and optimized by deleting degradation pathways, tuning gene expression levels, optimizing growth conditions, and investigating the effects of nitrogen supplementation for the strain.
ContributorsAbed, Omar (Author) / Nielsen, David (Thesis director) / Jones, Christopher (Committee member) / Chemical Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2020-05