Matching Items (73)
133800-Thumbnail Image.png
Description
Women and people of color are some of the most underrepresented groups in the STEM field (science, technology, engineering, and mathematics). The purpose of this study was to uncover the barriers that undergraduate Hispanic women, as well as other women of color, face while pursuing an education in a STEM-related

Women and people of color are some of the most underrepresented groups in the STEM field (science, technology, engineering, and mathematics). The purpose of this study was to uncover the barriers that undergraduate Hispanic women, as well as other women of color, face while pursuing an education in a STEM-related major at Arizona State University (ASU). In-depth interviews were conducted with 13 adult participants to dig deeper into the experiences of each woman and analyze how race and class overlap in each of the women's experiences. The concept of intersectionality was used to highlight various barriers such as perceptions of working versus middle-class students, the experience of being a first-generation college student, diversity campus-wide and in the classroom, effects of stereotyping, and impacts of mentorships. All women, no matter their gender, race, or socioeconomic status, faced struggles with stereotyping, marginalization, and isolation. Women in STEM majors at ASU performed better when provided with positive mentorships and grew aspirations to become a professional in the STEM field when encouraged and guided by someone who helped them build their scientific identities. Working-class women suffered from severe stress related to finances, family support, employment, and stereotyping. Reforming the culture of STEM fields in higher education will allow women to achieve success, further build their scientific identities, and increase the rate of women graduating with STEM degrees.
ContributorsValdivia, Lilianna Alina (Author) / Kim, Linda (Thesis director) / Camacho, Erika (Committee member) / School of Mathematical and Natural Sciences (Contributor) / School of Social and Behavioral Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
134639-Thumbnail Image.png
Description
This research study concerns the issue of gender diversity that still persists in STEM education, especially in computing-related fields. Females are so severely underrepresented in computing education that the diversity in the fields is even less than that in physics in K-12. This research study seeks to address the problem

This research study concerns the issue of gender diversity that still persists in STEM education, especially in computing-related fields. Females are so severely underrepresented in computing education that the diversity in the fields is even less than that in physics in K-12. This research study seeks to address the problem of low female participation in computing-related fields. For the purpose of the study, two versions of surveys were distributed. One was filled out by 94 local elementary school students that mostly in 3rd-4th grade; the other went to 399 college freshmen in W. P. Carey School of Business. It asks questions, including if students are interested in learning STEM, and what reasons explain them having interest or no interest in STEM learning. Meanwhile, the study aims to unveil if there are any gender discrepancies in regards to STEM learning. Besides those dynamics, three factors—attitudes toward learning computer skills, logic, and coding—are examined for indications on students’ interest in STEM learning.
The results suggest no indication that female students are necessarily less interested than male students in studying computing-related majors, despite that female students find working with computers and coding more difficult. Female students have diverse and varied interests that are non-computing-related, which could be an underlying factor that contributes to their “lower” participation in those majors. While self-interest is the key factor that influences students’ decisions in pursuing STEM majors or non-STEM majors, they also consider job market outlook an important factor. Compared to female students, male students tend to cite family influence in deciding whether to study STEM majors. Furthermore, showing positive attitudes toward working with computers, learning new computer skills, and even coding indicates both male and female students’ potential desires to pursue computing-related majors or careers.
ContributorsZhou, Xingyan (Author) / Lin, Elva (Suh-Yun) (Thesis director) / Hsiao, Sharon I-Han (Committee member) / WPC Graduate Programs (Contributor) / Department of Information Systems (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
134416-Thumbnail Image.png
Description
Engineers have a strong influence on everyday lives, ranging from electronics and trains to chemicals and organs [1]. However, in the United States, there is a large knowledge gap in the roles of engineers, especially in K-12 students [2] [3]. The National Academy of Engineering (NAE) recognizes the current problems

Engineers have a strong influence on everyday lives, ranging from electronics and trains to chemicals and organs [1]. However, in the United States, there is a large knowledge gap in the roles of engineers, especially in K-12 students [2] [3]. The National Academy of Engineering (NAE) recognizes the current problems in engineering, such as the dominance of white males in the field and the amount of education needed to become a successful engineer [4]. Therefore, the NAE encourages that the current engineering community begin to expose the younger generations to the real foundation of engineering: problem-solving [4]. The objective of this thesis is to minimize the knowledge gap by assessing the current perception of engineering amongst middle school and high school students and improving it through engaging and interactive presentations and activities that build upon the students’ problem-solving abilities.

The project was aimed towards middle school and high school students, as this is the estimated level where they learn biology and chemistry—key subject material in biomedical engineering. The high school students were given presentations and activities related to biomedical engineering. Additionally, within classrooms, posters were presented to middle school students. The content of the posters were students of the biomedical engineering program at ASU, coming from different ethnic backgrounds to try and evoke within the middle school students a sense of their own identity as a biomedical engineer. To evaluate the impact these materials had on the students, a survey was distributed before the students’ exposure to the materials and after that assesses the students’ understanding of engineering at two different time points. A statistical analysis was conducted with Microsoft Excel to assess the influence of the activity and/or presentation on the students’ understanding of engineering.
ContributorsLlave, Alison Rose (Author) / Ganesh, Tirupalavanam (Thesis director) / Parker, Hope (Committee member) / Harrington Bioengineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
134753-Thumbnail Image.png
Description
This paper explores factors to study why the number of students in STEM are not as high as they could be. Based on both Veda and Soumya's personal experiences, factors were chosen to understand their impact on whether a high school student would choose a STEM major in their college

This paper explores factors to study why the number of students in STEM are not as high as they could be. Based on both Veda and Soumya's personal experiences, factors were chosen to understand their impact on whether a high school student would choose a STEM major in their college of choice, which could lead them to having a career in STEM. The factors explored will be location, grade level, school, parent/guardian involvement, teacher involvement, media influences, and personal interest. Data was collected through surveys sent to both high school and college students. The high school data came solely from schools in the Phoenix area, whereas college students' data came from across the world. These surveys contained questions regarding all of the above factors and were crafted so that we could gain further insight into each factor without producing bias. Each factor had at least one personal experience by either Veda or Soumya. Many of the survey responses gave insight to how and why a student would decide to pursue STEM or why they did pursue STEM. The main implications derived from the study are the following: the importance of a good support network, active parent/guardian and teacher involvement, and specifically active science teacher involvement. Data from both college and high school students showed that students highly valued a science teacher. One recommendation from this thesis is to provide a training for teachers to learn about how to connect concepts they teach to real-world applications. This can be administered through the district so that they may bring in anyone they feel is qualified to teach such topics such as industry professionals or teachers who specialize in teaching STEM. The last recommendation is for parents to participate in a workshop that will inform them of how to be more involved/engaged with their student.
ContributorsPushpraj, Soumya (Co-author) / Inamdar, Veda (Co-author) / Scott, Kimberly (Thesis director) / Escontrías, Gabriel (Committee member) / Department of Information Systems (Contributor) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
134561-Thumbnail Image.png
Description
The aim of this study is to analyze the impact Arizona legislation has had on STEM education access, specifically for Latino students. Using socio-ecological systems theory, this study explores the relation between the macro and exo-systemic context of education legislation and the micro-systemic context of being a STEM undergraduate at

The aim of this study is to analyze the impact Arizona legislation has had on STEM education access, specifically for Latino students. Using socio-ecological systems theory, this study explores the relation between the macro and exo-systemic context of education legislation and the micro-systemic context of being a STEM undergraduate at a state university. In order to understand how STEM education is affected, legislation was analyzed through the Arizona Legislative Database. Additionally, current STEM undergraduates were interviewed in order to discover the factors that made them successful in their majors. Data from the interviews would demonstrate the influence of the Arizona legislation macro and exo-systems on the microsystemic portion of Latinos and their access to STEM education. A total of 24 students were interviewed as part of this study. Their responses shed light on the complexities of STEM education access and the importance of mentorship for success in STEM. The overall conclusion is that more efforts need to be made before STEM education is readily available to many, but the most effective way to achieve this is through mentorship.
ContributorsHernandez-Gonzalez, Rosalia (Author) / Herrera, Richard (Thesis director) / Casanova, Saskias (Committee member) / School of Politics and Global Studies (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
134423-Thumbnail Image.png
Description
The purpose of this study was to utilize quantitative results gained through surveys to determine the effect of hands-on engineering activities and a poster study on improving understanding and awareness of engineering disciplines in high school students. There was a focus on increasing participation of women and minorities in engineering

The purpose of this study was to utilize quantitative results gained through surveys to determine the effect of hands-on engineering activities and a poster study on improving understanding and awareness of engineering disciplines in high school students. There was a focus on increasing participation of women and minorities in engineering to improve diversity, and this study utilized biomedical engineering as a means of achieving these goals. The analysis of this thesis focused on the results of the pre-assessment and post-assessment taken by a group of high school students before and after a program using presentations in combination with engineering activities tackling real-world problems. These assessments objectively ranked both the awareness and interest level in various engineering activities across a number of disciplines. The results were analyzed using percentages of the engineering statements that the students recognized as engineering and were interested in, as well as using t-tests. Statistical significance was found for the percentage of statements that the students expressed the highest interest level in between the initial and final survey. The other factors analyzed did not produce statistical significance, but the increase in interest level does meet one of the primary goals of the project. Since the percentages of all the positive factors did increase between the pre- and post- assessment, the study can be considered a success overall; more data is simply needed to indicate significance in these other factors. Future studies will focus on implementing this program as an after-school activity that can be led by members of the engineering community at ASU.
ContributorsLum, Kenna (Co-author) / Marshall, Dirk (Co-author) / Ganesh, Tirupalavanam (Thesis director) / Parker, Hope (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
132904-Thumbnail Image.png
Description
This thesis is explaining the background, methods, discussions, and future work of developing a low-budget, variable-length, Arduino-based robotics unit for a 5th-7th grade classroom. The main motivation for the Thesis came from self-motivation and a lack of K-12th grade teachers’ teaching robotics. The end goal of the Thesis

This thesis is explaining the background, methods, discussions, and future work of developing a low-budget, variable-length, Arduino-based robotics unit for a 5th-7th grade classroom. The main motivation for the Thesis came from self-motivation and a lack of K-12th grade teachers’ teaching robotics. The end goal of the Thesis would be to teach primary school teachers how to teach robotics in the hopes that it would be taught in their classrooms. There have been many similar robotics or Arduino-based curricula that do not fit the preferred requirement for this thesis but do provide some level of guidance for future development. The method of the Thesis came in four main phases: 1) setup, 2) pre-unit phase, 3) unit phase, and 4) post unit phase. The setup focused primarily on making a timeline and researching what had already been done. The pre-unit phase focused primarily on the development of a new lesson plan along with a new robot design. The unit phase was primarily focused around how the teacher was assisted from a distance. Lastly, the post unit phase was when feedback was received from the teacher and the robots were inventoried to determine if, and what, damage occurred. There are many ways in which the lesson plan and robot design can be improved. Those improvements are the basis for a potential follow-up master’s thesis following the provided timeline.
ContributorsLerner, Jonah Benjamin (Author) / Carberry, Adam (Thesis director) / Walters, Molina (Committee member) / Engineering Programs (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
132913-Thumbnail Image.png
Description
The goal of this study was to understand elementary school children’s perceptions of engineering. A total of 949 elementary school students were surveyed, individually or as a whole group, to examine gender and age differences in achievement-related beliefs (i.e., competency, interest, and importance) pertaining to engineering-related skills and activities. The

The goal of this study was to understand elementary school children’s perceptions of engineering. A total of 949 elementary school students were surveyed, individually or as a whole group, to examine gender and age differences in achievement-related beliefs (i.e., competency, interest, and importance) pertaining to engineering-related skills and activities. The results of this study found that specific skills and activities showed significant gender and age differences for each of the three measures. Significant findings showed that younger students (kindergarten through second grade) found many of the engineering-related skills and activities more interesting than the older students (third through fifth grade); however, the older students rated more of the skills and activities as being important. Gender differences showed that girls typically rated themselves as being more competent, more interested in, and valuing the skills and activities that pertained more to mindset ideas, such as learning from your mistakes and failures or not giving up, whereas boys rated themselves higher in more of the hands-on activities, such as building with things like legos, blocks, and k’nex.
ContributorsHandlos, Jamie Lynn Harte (Author) / Miller, Cindy (Thesis director) / Reisslein, Martin (Committee member) / School of Life Sciences (Contributor) / Chemical Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
134360-Thumbnail Image.png
Description
The goal of this research study was to empirically study the effects of a project based learning activity. The effectiveness of this study was benchmarked according to two results: the effectiveness in communicating the scope and impact of engineering, and the effectiveness in increasing interest in computer systems engineering (CSE).

The goal of this research study was to empirically study the effects of a project based learning activity. The effectiveness of this study was benchmarked according to two results: the effectiveness in communicating the scope and impact of engineering, and the effectiveness in increasing interest in computer systems engineering (CSE). This research report presents an analysis of the effects of making engineering education socially relevant, interesting and accessible. High school students participated in a learning experience in which they designed flood evacuation systems that could warn a city of incoming floods. Both pre-assessments and post-assessments were implemented to capture students' awareness of engineering tasks and their interest levels in engineering tasks. Data on students' perceptions of specific engineering tasks were analyzed quantitatively through Wilcoxon signed-rank testing and determined that the program had significant positive effects on developing more accurate conceptions of engineering tasks. The results relating to student interest in CSE indicated that there was an increased level of interest in CSE engineering tasks after the program. There was a 14% increase in number of students who found engineering tasks interesting from 64% to 78%. However, as participants self-selected to participate in this learning experience, many students had positive perceptions of engineering tasks prior to engaging in the learning experience. This study was successful and met both of its primary goals of enhancing awareness and interest in engineering in this particular group of high school students.
ContributorsRidhwaan, Syed (Author) / Ganesh, Tirupalavanam (Thesis director) / Shrake, Scott (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
134134-Thumbnail Image.png
Description
In today's world, technology plays a large role in everyone's life. However, there is a short supply of professionals to fill the roles in the computing field. When examining closer, it is clear that one group has a smaller representation: women. This can be contributed to many factors early in

In today's world, technology plays a large role in everyone's life. However, there is a short supply of professionals to fill the roles in the computing field. When examining closer, it is clear that one group has a smaller representation: women. This can be contributed to many factors early in the women's lives and academic careers. In hopes of increasing the number of women computing professionals, this thesis aimed to understand the problem of a lack of women in technology and studied how hackathons could be a possible solution. The research followed Desert Hacks as it examines the typical participants as well as the hackathons effects on women's morale in technology. Two important questions during the investigation were what kind of women are attending hackathons and how do women feel about the technology industry after a hackathon? The results suggested that hackathon had an overall positive effect on women's motivation in the computing field. Additionally, most research participants believed that everyone has the potential to do well in the field and that gender inclusion is important for the industry. This ideology can foster a healthy environment for women to become more motivated in computing. Through these results, hackathons can be seen as another mean to help motivate women in the field and open up the possibility of future studies of women and hackathons.
ContributorsVo, Thong Bach (Author) / Atkinson, Robert (Thesis director) / Chavez-Echeagaray, Maria Elena (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2017-12