Matching Items (4)
Filtering by

Clear all filters

134360-Thumbnail Image.png
Description
The goal of this research study was to empirically study the effects of a project based learning activity. The effectiveness of this study was benchmarked according to two results: the effectiveness in communicating the scope and impact of engineering, and the effectiveness in increasing interest in computer systems engineering (CSE).

The goal of this research study was to empirically study the effects of a project based learning activity. The effectiveness of this study was benchmarked according to two results: the effectiveness in communicating the scope and impact of engineering, and the effectiveness in increasing interest in computer systems engineering (CSE). This research report presents an analysis of the effects of making engineering education socially relevant, interesting and accessible. High school students participated in a learning experience in which they designed flood evacuation systems that could warn a city of incoming floods. Both pre-assessments and post-assessments were implemented to capture students' awareness of engineering tasks and their interest levels in engineering tasks. Data on students' perceptions of specific engineering tasks were analyzed quantitatively through Wilcoxon signed-rank testing and determined that the program had significant positive effects on developing more accurate conceptions of engineering tasks. The results relating to student interest in CSE indicated that there was an increased level of interest in CSE engineering tasks after the program. There was a 14% increase in number of students who found engineering tasks interesting from 64% to 78%. However, as participants self-selected to participate in this learning experience, many students had positive perceptions of engineering tasks prior to engaging in the learning experience. This study was successful and met both of its primary goals of enhancing awareness and interest in engineering in this particular group of high school students.
ContributorsRidhwaan, Syed (Author) / Ganesh, Tirupalavanam (Thesis director) / Shrake, Scott (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
134014-Thumbnail Image.png
Description
This project examined the need for Science, Technology, Engineering, and Math (STEM) activities within a specific modality (centers) and their potential influence on elementary students with a particular emphasis on gender. STEM is an interdisciplinary curriculum that seeks to seamlessly incorporate science, technology, engineering, and math. Due to the increasing

This project examined the need for Science, Technology, Engineering, and Math (STEM) activities within a specific modality (centers) and their potential influence on elementary students with a particular emphasis on gender. STEM is an interdisciplinary curriculum that seeks to seamlessly incorporate science, technology, engineering, and math. Due to the increasing demand for STEM professions and proficiency within each aspect, the education system and individual educators require lessons and modalities that motivate learning in each of these areas. Administrators and teachers need creative ways to provide effective STEM implementation. Currently, the education system as a whole lacks creative and motivating material for these four domains. Not only this, but there has been a misunderstanding in regard to what effective STEM implementation entails, as well as a dearth of classroom ready lessons for educators. As a result, this thesis project developed a way to implement STEM through the use of learning centers. Learning centers are defined as designated areas within a classroom that allow easy access to a variety of learning materials. Within these centers are activities that reinforce concepts by using inquiry-based learning. Learning centers are effective in developing additional concepts or providing students with a greater breadth of knowledge on a concept. This thesis project developed three STEM learning center activity boxes and two STEM learning center outlines. Creating effective STEM learning centers and outlines was a multistep process. The first step was to develop a 3E lesson plan for each activity. Once the lesson plans were revised and complete, the creation of the three activity boxes was next. To create the activity boxes, all the required materials and worksheets were gathered and printed. From there, the next step was to implement the learning centers in a classroom to observe the results and propose any modifications. Afterwards, a reflection detailing the results and modifications was made. In the end, the goal of this project was to develop easily implemented STEM activities for my future classroom. Coming up with a creative way to get kids curious and excited about STEM is key in building STEM awareness. Not only did my project create STEM activities I can implement, but it also allowed me the opportunity to share my activities with other teachers. As a result, influencing the spread of STEM amongst future and current teachers.
ContributorsSchott, Nicole Elizabeth (Author) / Walters, Molina (Thesis director) / Oliver, Jill (Committee member) / Division of Teacher Preparation (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
134873-Thumbnail Image.png
Description
As a Country, the United States is continually falling behind academically when compared to other Nations. Therefore, the purpose of my Honors Thesis is to enlighten others on the importance of incorporating science, technology, engineering, and mathematics (STEM) into our classrooms. When students have the chance to partake in hands

As a Country, the United States is continually falling behind academically when compared to other Nations. Therefore, the purpose of my Honors Thesis is to enlighten others on the importance of incorporating science, technology, engineering, and mathematics (STEM) into our classrooms. When students have the chance to partake in hands on, inquiry based lessons, their new knowledge for the subject increases drastically. However, completing STEM lessons in the classroom is a challenging task. For this reason, I have designed a unit's worth of lesson plans, where the unit encompasses science, technology, engineering, and mathematics. These STEM lessons are inquiry-based so that students get an understanding that science is a learning process, not just a group of facts to be memorized. The lessons are written in the 5E format, as this format is based on the way human beings learn. I wanted to make this as easy as possible for teachers to bring inquiry-based STEM learning into the classroom. When students are allowed to take control of their own learning and make discoveries for themselves, they are going to realize the excitement that comes with STEM. This will lead more students to pursue STEM careers, thus helping bring the United States back to a competitive level academically.
ContributorsPiatak, Mary Frances (Author) / Oliver, Jill (Thesis director) / Walters, Molina (Committee member) / Division of Teacher Preparation (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
135707-Thumbnail Image.png
Description
The goal of this research study was to empirically study a poster-based messaging campaign in comparison to that of a project-based learning approach in assessing the effectiveness of these methods in conveying the scope of biomedical engineering to upper elementary school students. For the purpose of this honors thesis, this

The goal of this research study was to empirically study a poster-based messaging campaign in comparison to that of a project-based learning approach in assessing the effectiveness of these methods in conveying the scope of biomedical engineering to upper elementary school students. For the purpose of this honors thesis, this research paper specifically reflects and analyzes the first stage of this study, the poster-based messaging campaign. 6th grade students received socially relevant messaging of juniors and seniors at ASU achieving their biomedical aspirations, and received information regarding four crucial themes of biomedical engineering via daily presentations and a website. Their learning was tracked over the course of the weeklong immersion program through a pre/post assessment. This data was then analyzed through the Wilcoxon matched pairs test to determine whether the change in biomedical engineering awareness was statistically significant. It was determined that a poster-based messaging campaign indeed increased awareness of socially relevant themes within biomedical engineering, and provided researchers with tangible ways to revise the study before a second round of implementation. The next stage of the study aims to explain biomedical engineering through engaging activities that stimulate making while emphasizing design-aesthetic appeal and engineering habits of mind such as creativity, teamwork, and communication.
ContributorsSwaminathan, Swetha Anu (Author) / Ganesh, Tirupalavanam (Thesis director) / Shrake, Scott (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05