Matching Items (4)
Filtering by

Clear all filters

150699-Thumbnail Image.png
Description
Historically, African American students have been underrepresented in the fields of science, technology, engineering and mathematics (STEM). If African American students continue to be underrepresented in STEM fields, they will not have access to valuable and high-paying sectors of the economy. Despite the number of African Americans in these fields

Historically, African American students have been underrepresented in the fields of science, technology, engineering and mathematics (STEM). If African American students continue to be underrepresented in STEM fields, they will not have access to valuable and high-paying sectors of the economy. Despite the number of African Americans in these fields being disproportionately low, there are still individuals that persist and complete science degrees. The aim of this study was to investigate African American students who excel in science at Arizona State University and examine the barriers and affordances that they encounter on their journey toward graduation. Qualitative research methods were used to address the research question of the study. My methodology included creating a case study to investigate the experiences of eight African American undergraduate college students at Arizona State University. These four male and four female students were excelling sophomores, juniors, or seniors who were majoring in a science field. Two of the males came from lower socioeconomic status (SES) backgrounds, while two of the males were from higher SES backgrounds. The same applied to the four female participants. My research utilized surveys, semistructured interviews, and student observations to collect data that was analyzed and coded to determine common themes and elements that exist between the students. As a result of the data collection opportunities, peer support and financial support were identified as barriers, while, parental support, financial support, peer support, and teacher support were identified as affordances. In analyzing the data, the results indicated that for the student subjects in this study, sex and SES did not have any relationship with the barriers and affordances experienced.
ContributorsBoyce, Quintin (Author) / Scott, Kimberly (Thesis advisor) / Falls, Deanne (Committee member) / Baker, Dale (Committee member) / Arizona State University (Publisher)
Created2012
156614-Thumbnail Image.png
Description
Academia is not what it used to be. In today’s fast-paced world, requirements

are constantly changing, and adapting to these changes in an academic curriculum

can be challenging. Given a specific aspect of a domain, there can be various levels of

proficiency that can be achieved by the students. Considering the wide array

Academia is not what it used to be. In today’s fast-paced world, requirements

are constantly changing, and adapting to these changes in an academic curriculum

can be challenging. Given a specific aspect of a domain, there can be various levels of

proficiency that can be achieved by the students. Considering the wide array of needs,

diverse groups need customized course curriculum. The need for having an archetype

to design a course focusing on the outcomes paved the way for Outcome-based

Education (OBE). OBE focuses on the outcomes as opposed to the traditional way of

following a process [23]. According to D. Clark, the major reason for the creation of

Bloom’s taxonomy was not only to stimulate and inspire a higher quality of thinking

in academia – incorporating not just the basic fact-learning and application, but also

to evaluate and analyze on the facts and its applications [7]. Instructional Module

Development System (IMODS) is the culmination of both these models – Bloom’s

Taxonomy and OBE. It is an open-source web-based software that has been

developed on the principles of OBE and Bloom’s Taxonomy. It guides an instructor,

step-by-step, through an outcomes-based process as they define the learning

objectives, the content to be covered and develop an instruction and assessment plan.

The tool also provides the user with a repository of techniques based on the choices

made by them regarding the level of learning while defining the objectives. This helps

in maintaining alignment among all the components of the course design. The tool

also generates documentation to support the course design and provide feedback

when the course is lacking in certain aspects.

It is not just enough to come up with a model that theoretically facilitates

effective result-oriented course design. There should be facts, experiments and proof

that any model succeeds in achieving what it aims to achieve. And thus, there are two

research objectives of this thesis: (i) design a feature for course design feedback and

evaluate its effectiveness; (ii) evaluate the usefulness of a tool like IMODS on various

aspects – (a) the effectiveness of the tool in educating instructors on OBE; (b) the

effectiveness of the tool in providing appropriate and efficient pedagogy and

assessment techniques; (c) the effectiveness of the tool in building the learning

objectives; (d) effectiveness of the tool in document generation; (e) Usability of the

tool; (f) the effectiveness of OBE on course design and expected student outcomes.

The thesis presents a detailed algorithm for course design feedback, its pseudocode, a

description and proof of the correctness of the feature, methods used for evaluation

of the tool, experiments for evaluation and analysis of the obtained results.
ContributorsRaj, Vaishnavi (Author) / Bansal, Srividya (Thesis advisor) / Bansal, Ajay (Committee member) / Mehlhase, Alexandra (Committee member) / Arizona State University (Publisher)
Created2018
134753-Thumbnail Image.png
Description
This paper explores factors to study why the number of students in STEM are not as high as they could be. Based on both Veda and Soumya's personal experiences, factors were chosen to understand their impact on whether a high school student would choose a STEM major in their college

This paper explores factors to study why the number of students in STEM are not as high as they could be. Based on both Veda and Soumya's personal experiences, factors were chosen to understand their impact on whether a high school student would choose a STEM major in their college of choice, which could lead them to having a career in STEM. The factors explored will be location, grade level, school, parent/guardian involvement, teacher involvement, media influences, and personal interest. Data was collected through surveys sent to both high school and college students. The high school data came solely from schools in the Phoenix area, whereas college students' data came from across the world. These surveys contained questions regarding all of the above factors and were crafted so that we could gain further insight into each factor without producing bias. Each factor had at least one personal experience by either Veda or Soumya. Many of the survey responses gave insight to how and why a student would decide to pursue STEM or why they did pursue STEM. The main implications derived from the study are the following: the importance of a good support network, active parent/guardian and teacher involvement, and specifically active science teacher involvement. Data from both college and high school students showed that students highly valued a science teacher. One recommendation from this thesis is to provide a training for teachers to learn about how to connect concepts they teach to real-world applications. This can be administered through the district so that they may bring in anyone they feel is qualified to teach such topics such as industry professionals or teachers who specialize in teaching STEM. The last recommendation is for parents to participate in a workshop that will inform them of how to be more involved/engaged with their student.
ContributorsPushpraj, Soumya (Co-author) / Inamdar, Veda (Co-author) / Scott, Kimberly (Thesis director) / Escontrías, Gabriel (Committee member) / Department of Information Systems (Contributor) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
135481-Thumbnail Image.png
Description
This study aims to critically analyze how the undergraduate computing world has become highly androcentric in the past decades. This thesis seeks to take a post-structuralist stance to improving the gender disparity that deconstructs many of the logics that emphasize gender differences in computational thinking. Ethnographic, qualitative data will be

This study aims to critically analyze how the undergraduate computing world has become highly androcentric in the past decades. This thesis seeks to take a post-structuralist stance to improving the gender disparity that deconstructs many of the logics that emphasize gender differences in computational thinking. Ethnographic, qualitative data will be used and coalesced with critical feminist theory to create a robust solution to closing the gender gap in the undergraduate computing world.
ContributorsRahman, Risa Fayeza (Author) / Navabi, Farideh (Thesis director) / Scott, Kimberly (Committee member) / School of Social Transformation (Contributor) / School of Politics and Global Studies (Contributor) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05