Matching Items (4)
Filtering by

Clear all filters

156092-Thumbnail Image.png
Description
Guitar Hero III and similar games potentially offer a vehicle for improvement of musical rhythmic accuracy with training delivered in both visual and auditory formats and by use of its novel guitar-shaped interface; however, some theories regarding multimedia learning suggest sound is a possible source of extraneous cognitive load while

Guitar Hero III and similar games potentially offer a vehicle for improvement of musical rhythmic accuracy with training delivered in both visual and auditory formats and by use of its novel guitar-shaped interface; however, some theories regarding multimedia learning suggest sound is a possible source of extraneous cognitive load while playing so players may score higher with sound turned off. Also, existing studies have shown that differences in the physical format of interfaces affect learning outcomes. This study sought to determine whether (a) the game’s audio content affects rhythmic accuracy, and (b) the type of game controller used affects learning of rhythmic accuracy. One hundred participants were randomly assigned in approximately equal numbers (ns = 25) to the four cells of a 2x2 between-subjects design. The first variable was the audio content of the game with two levels: on or off. The second variable was the type of game controller: the standard guitar-style controller or tablet interface. Participants across all conditions completed a pre- and post-test with a system that required them to tap along with repeated rhythmic patterns on an electronic drum pad. Statistical evidence showed better outcomes with a tablet controller with respect to input time error, reduction of extra notes played, and reduction of missed notes; however, the guitar-style controller produced superior outcomes in terms of avoiding missed notes and was associated with higher satisfaction by participants. When audio was present better outcomes were achieved at multiple factor-levels of reduction of missed responses, but superior outcomes in input time error were seen without audio. There was no evidence to suggest an interaction between controller type and the presence or absence of audio.
ContributorsThomas, James William (Author) / Zuiker, Steven J (Thesis advisor) / Atkinson, Robert (Thesis advisor) / Savenye, Wilhelmina C (Committee member) / Arizona State University (Publisher)
Created2017
134134-Thumbnail Image.png
Description
In today's world, technology plays a large role in everyone's life. However, there is a short supply of professionals to fill the roles in the computing field. When examining closer, it is clear that one group has a smaller representation: women. This can be contributed to many factors early in

In today's world, technology plays a large role in everyone's life. However, there is a short supply of professionals to fill the roles in the computing field. When examining closer, it is clear that one group has a smaller representation: women. This can be contributed to many factors early in the women's lives and academic careers. In hopes of increasing the number of women computing professionals, this thesis aimed to understand the problem of a lack of women in technology and studied how hackathons could be a possible solution. The research followed Desert Hacks as it examines the typical participants as well as the hackathons effects on women's morale in technology. Two important questions during the investigation were what kind of women are attending hackathons and how do women feel about the technology industry after a hackathon? The results suggested that hackathon had an overall positive effect on women's motivation in the computing field. Additionally, most research participants believed that everyone has the potential to do well in the field and that gender inclusion is important for the industry. This ideology can foster a healthy environment for women to become more motivated in computing. Through these results, hackathons can be seen as another mean to help motivate women in the field and open up the possibility of future studies of women and hackathons.
ContributorsVo, Thong Bach (Author) / Atkinson, Robert (Thesis director) / Chavez-Echeagaray, Maria Elena (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2017-12
135099-Thumbnail Image.png
Description
Smartphone privacy is a growing concern around the world; smartphone applications routinely take personal information from our phones and monetize it for their own profit. Worse, they're doing it legally. The Terms of Service allow companies to use this information to market, promote, and sell personal data. Most users seem

Smartphone privacy is a growing concern around the world; smartphone applications routinely take personal information from our phones and monetize it for their own profit. Worse, they're doing it legally. The Terms of Service allow companies to use this information to market, promote, and sell personal data. Most users seem to be either unaware of it, or unconcerned by it. This has negative implications for the future of privacy, particularly as the idea of smart home technology becomes a reality. If this is what privacy looks like now, with only one major type of smart device on the market, what will the future hold, when the smart home systems come into play. In order to examine this question, I investigated how much awareness/knowledge smartphone users of a specific demographic (millennials aged 18-25) knew about their smartphone's data and where it goes. I wanted three questions answered: - For what purposes do millennials use their smartphones? - What do they know about smartphone privacy and security? - How will this affect the future of privacy? To accomplish this, I gathered information using a distributed survey to millennials attending Arizona State University. Using statistical analysis, I exposed trends for this demographic, discovering that there isn't a lack of knowledge among millennials; most are aware that smartphone apps can collect and share data and many of the participants are not comfortable with the current state of smartphone privacy. However, more than half of the study participants indicated that they never read an app's Terms of Service. Due to the nature of the privacy vs. convenience argument, users will willingly agree to let apps take their personal in- formation, since they don't want to give up the convenience.
ContributorsJones, Scott Spenser (Author) / Atkinson, Robert (Thesis director) / Chavez-Echeagaray, Maria Elena (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
153640-Thumbnail Image.png
Description
The purpose of this instructional design and development study was to describe, evaluate and improve the instructional design process and the work of interdisciplinary design teams. A National Science Foundation (NSF) funded, Transforming Undergraduate Education in Science (TUES) project was the foundation for this study. The project developed new curriculum

The purpose of this instructional design and development study was to describe, evaluate and improve the instructional design process and the work of interdisciplinary design teams. A National Science Foundation (NSF) funded, Transforming Undergraduate Education in Science (TUES) project was the foundation for this study. The project developed new curriculum materials to teach learning content in unsaturated soils in undergraduate geotechnical engineering classes, a subset of the civil engineering. The study describes the instructional design (ID) processes employed by the team members as they assess the need, develop the materials, disseminate the learning unit, and evaluate its effectiveness, along with the impact the instructional design process played in the success of the learning materials with regard to student achievement and faculty and student attitudes. Learning data were collected from undergraduate geotechnical engineering classes from eight partner universities across the country and Puerto Rico over three phases of implementation. Data were collected from students and faculty that included pretest/posttest scores and attitudinal survey questions. The findings indicated a significant growth in the learning with the students of the faculty who were provided all learning materials. The findings also indicated an overall faculty and student satisfaction with the instructional materials. Observational and anecdotal data were also collected in the form of team meeting notes, personal observations, interviews and design logs. Findings of these data indicated a preference with working on an interdisciplinary instructional design team. All these data assisted in the analysis of the ID process, providing a basis for descriptive and inferential data used to provide suggestions for improving the ID process and the work of interdisciplinary instructional design teams.
ContributorsOrnelas, Arthur (Author) / Savenye, Wilhelmina C. (Thesis advisor) / Atkinson, Robert (Committee member) / Bitter, Gary (Committee member) / Houston, Sandra (Committee member) / Arizona State University (Publisher)
Created2015