Matching Items (3)
Filtering by

Clear all filters

148071-Thumbnail Image.png
Description

Hundreds of thousands of people die annually from malaria; a protozoan of the genus Plasmodium is responsible for this mortality. The Plasmodium parasite undergoes several life stages within the mosquito vector, the transition between which require passage across the lumen of the mosquito midgut. It has been observed that in

Hundreds of thousands of people die annually from malaria; a protozoan of the genus Plasmodium is responsible for this mortality. The Plasmodium parasite undergoes several life stages within the mosquito vector, the transition between which require passage across the lumen of the mosquito midgut. It has been observed that in about 15% of parasites that develop ookinetes in the mosquito abdomen, sporozoites never develop in the salivary glands, indicating that passage across the midgut lumen is a significant barrier in parasite development (Gamage-Mendis et al., 1993). We aim to investigate a possible correlation between passage through the midgut lumen and drug-resistance trends in Plasmodium falciparum parasites. This study contains a total of 1024 Anopheles mosquitoes: 187 Anopheles gambiae and 837 Anopheles funestus samples collected in high malaria transmission areas of Mozambique between March and June of 2016. Sanger sequencing will be used to determine the prevalence of known resistance alleles for anti-malarial drugs: chloroquine resistance transporter (pfcrt), multidrug resistance (pfmdr1) gene, dihydropteroate synthase (pfdhps) and dihydrofolate reductase (pfdhfr). We compare prevalence of resistance between abdomen and head/thorax in order to determine whether drug resistant parasites are disproportionately hindered during their passage through the midgut lumen. A statistically significant difference between resistance alleles in the two studied body sections supports the efficacy of new anti-malarial gene surveillance strategies in areas of high malaria transmission.

ContributorsPhillips, Keeley Isabella (Author) / Huijben, Silvie (Thesis director) / Gile, Gillian (Committee member) / Young, Steven (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
131551-Thumbnail Image.png
Description
The non-native mosquito Aedes aegypti has become a common nuisance in Maricopa county. Associated with human settlement, Ae. aegypti is known to reproduce in standing water sources both indoors and outdoors, within vessels such as tires, flowerpots, and neglected swimming pools (Jansen & Beebe, 2010). Ae. aegypti and the related

The non-native mosquito Aedes aegypti has become a common nuisance in Maricopa county. Associated with human settlement, Ae. aegypti is known to reproduce in standing water sources both indoors and outdoors, within vessels such as tires, flowerpots, and neglected swimming pools (Jansen & Beebe, 2010). Ae. aegypti and the related Ae. albopictus are the primary vectors of the arboviral diseases chikungunya, Zika, yellow fever and dengue. Ae. aegypti tends to blood feed multiple times per gonotrophic cycle (cycle of feeding and egg laying) which, alongside a preference for human blood and close association with human habitation, contributes to an increased risk of Ae. aegypti borne virus transmission (Scott & Takken, 2012). Between 2010-2017, 153 travel-associated cases of dengue were reported in the whole of Arizona (Rivera et al., 2020); while there have been no documented locally transmitted cases of Aedes borne diseases in Maricopa county, there are no apparent reasons why local transmission can’t occur in the future via local Aedes aegypti mosquitoes infected after feeding from travelling viremic hosts. Incidents of local dengue transmission in New York (Rivera et al., 2020) and Barcelona (European Center for Disease Control [ECDC], 2019) suggest that outbreaks of Aedes borne arbovirus’ can occur in regions more temperate than the current endemic range of Aedes borne diseases. Further, while the fact that Ae. aegypti eggs have a high mortality rate when exposed to cold temperatures limits the ability for Ae aegypti to establish stable breeding populations in temperate climates (Thomas, Obermayr, Fischer, Kreyling, & Beierkuhnlein, 2012), global increases in temperature will expand the possible ranges of Ae aegypti and Aedes borne diseases.
ContributorsHon, Ruiheng (Author) / Paaijmans, Krijn (Thesis director) / Bond, Angela (Committee member) / Angilletta, Michael (Committee member) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
158466-Thumbnail Image.png
Description
Neglected tropical diseases (NTDs) comprise of diverse communicable diseases that affect mostly the developing economies of the world, the “neglected” populations. The NTDs Visceral Leishmaniasis (VL) and Soil-transmitted Helminthiasis (STH) are among the top contributors of global mortality and/or morbidity. They affect resource-limited regions (poor health-care literacy, infrastructure, etc.) and

Neglected tropical diseases (NTDs) comprise of diverse communicable diseases that affect mostly the developing economies of the world, the “neglected” populations. The NTDs Visceral Leishmaniasis (VL) and Soil-transmitted Helminthiasis (STH) are among the top contributors of global mortality and/or morbidity. They affect resource-limited regions (poor health-care literacy, infrastructure, etc.) and patients’ treatment behavior is irregular due to the social constraints. Through two case studies, VL in India and STH in Ghana, this work aims to: (i) identify the additional and potential hidden high-risk population and its behaviors critical for improving interventions and surveillance; (ii) develop models with those behaviors to study the role of improved control programs on diseases’ dynamics; (iii) optimize resources for treatment-related interventions.

Treatment non-adherence is a less focused (so far) but crucial factor for the hindrance in WHO’s past VL elimination goals. Moreover, treatment non-adherers, hidden from surveillance, lead to high case-underreporting. Dynamical models are developed capturing the role of treatment-related human behaviors (patients’ infectivity, treatment access and non-adherence) on VL dynamics. The results suggest that the average duration of treatment adherence must be increased from currently 10 days to 17 days for a 28-day Miltefosine treatment to eliminate VL.

For STH, children are considered as a high-risk group due to their hygiene behaviors leading to higher exposure to contamination. Hence, Ghana, a resource-limited country, currently implements a school-based Mass Drug Administration (sMDA) program only among children. School staff (adults), equally exposed to this high environmental contamination of STH, are largely ignored under the current MDA program. Cost-effective MDA policies were modeled and compared using alternative definitions of “high-risk population”. This work optimized and evaluated how MDA along with the treatment for high-risk adults makes a significant improvement in STH control under the same budget. The criticality of risk-structured modeling depends on the infectivity coefficient being substantially different for the two adult risk groups.

This dissertation pioneers in highlighting the cruciality of treatment-related risk groups for NTD-control. It provides novel approaches to quantify relevant metrics and impact of population factors. Compliance with the principles and strategies from this study would require a change in political thinking in the neglected regions in order to achieve persistent NTD-control.
ContributorsThakur, Mugdha (Author) / Mubayi, Anuj (Thesis advisor) / Hurtado, Ana M (Committee member) / Paaijmans, Krijn (Committee member) / Michael, Edwin (Committee member) / Arizona State University (Publisher)
Created2020