Matching Items (3)

132442-Thumbnail Image.png

Cloning and expression of antigen-specific T cell receptors

Description

Cancer poses a significant burden on the global health system and represents a leading cause of death worldwide. For late-stage cancers, the traditional treatments of chemotherapy, radiation, and surgery are not always viable, and they can pose unnecessary health risks

Cancer poses a significant burden on the global health system and represents a leading cause of death worldwide. For late-stage cancers, the traditional treatments of chemotherapy, radiation, and surgery are not always viable, and they can pose unnecessary health risks to the patients. New immunotherapies, such as adoptive cell transfer, are being developed and refined to treat such cancers. T cell immunotherapies in particular, where a patient’s T cell lymphocytes are isolated and amplified to be re-infused into the patient or where human cell lines are engineered to express T cell receptors for the recognition of common cancer antigens, are being expanded on because for some cancers, they could be the only option. Constructing an optimal pipeline for cloning and expression of antigen-specific TCRs has significant bearing on the efficacy of engineered cell lines for ACT. Adoptive T cell transfer, while making great strides, has to overcome a diverse T cell repertoire – cloning and expressing antigen-specific TCRs can mediate this understanding. Having identified the high frequency FluM1-specific TCR sequences in stimulated donor PBMCs, it was hypothesized that the antigen-specific TCR could be reconstructed via Gateway cloning methods and tested for expression and functionality. Establishing this pipeline would confirm an ability to properly pair and express the heterodimeric chains. In the context of downstream applications, neoantigens would be used to stimulate T cells, the α and β chains would be paired via single-cell or bulk methods, and instead of Gateway cloning, the CDR3 hypervariable regions α and β chains alone would be co-expressed using Golden Gate assembly methods.

Contributors

Agent

Created

Date Created
2019-05

135335-Thumbnail Image.png

Linking Immunologic and Epidemiologic Models of Virus Transmission and Susceptibility

Description

Memory CD8+ T-cells can persist in the absence of antigen, primed for immediate activation and proliferation if later exposed to the same antigen. These cytotoxic lymphocytes provide long-term immunity following an acute infection. Studies have observed that intermediate levels of

Memory CD8+ T-cells can persist in the absence of antigen, primed for immediate activation and proliferation if later exposed to the same antigen. These cytotoxic lymphocytes provide long-term immunity following an acute infection. Studies have observed that intermediate levels of general T cell transfer prior to infection may cause an inappropriate response resulting in increased pathology rather than prevention. Therefore, our study focused on a memory CD8 T-cell therapy using lymphocytic choriomeningitis virus (LCMV) specific splenocytes, which activate and proliferate at an accelerated pace compared to that of naive T-cells. LCMV is a natural murine pathogen which also poses a zoonotic infection threat to humans, and the effect of immune cell vaccination therapies for LCMV is not fully understood. We observed the effect of multiple memory CD8 T cell dosage levels on overall disease and memory CD8 T-cell response to the virus. Infection by exposure to a carrier was shown to have a reduced impact on mice receiving higher doses of memory T cells prior to infection compared to mice receiving less or no memory cells. Higher presence of activated memory cells were shown to correlate with less disease-related weight loss and accelerated recovery times. Survival rate after exposure to carriers was not shown to be affected by dosage level, warranting further research regarding the prevalence of the immunopathology observed in other studies in natural murine transmission models.

Contributors

Agent

Created

Date Created
2016-05

131545-Thumbnail Image.png

The Development of a T Cell Receptor Expression System to Verify TCR Specificity of Expanded Clones from Whole Blood: The beginnings of Adoptive T cell Therapy and T Cell Receptor Prediction

Description

Immunology, the study of the immune system and its ability to distinguish self from non-self, is a rapidly advancing sector of molecular biology. Cancer, being host derived, provides a difficult challenge for immune cells to distinguish it from normal tissue.

Immunology, the study of the immune system and its ability to distinguish self from non-self, is a rapidly advancing sector of molecular biology. Cancer, being host derived, provides a difficult challenge for immune cells to distinguish it from normal tissue. The historic treatment of cancer has had three main methods: radiation, chemotherapy, and surgery (1). Due to recent advancements in understanding the regulatory role of adaptive immunity against cancer, researchers have been attempting to engineer therapies to enhance patients’ immunities against their cancer. Immunotherapies, both passive and active, demonstrate potential for combating many diseases. Passive immunization provides temporary protection against a pathogen, whereas active immunization teaches the patient’s system to respond to the antigen independently, giving life-long immunity. Passive immunization, generally, is a much more expensive method of providing immunity and is commonly used in emergency situations. Anti-venom, for example, uses antibodies grown in lab to neutralize venom. Examples of active immunization are vaccines, which mimic the wild-type pathogen in a way that elicits an immune response, specifically naïve lymphocyte activation and maturation into memory lymphocytes. In terms of cancer therapy, both passive and active immunization are being tested for efficacy (2).

Contributors

Agent

Created

Date Created
2020-05