Matching Items (55)
Filtering by

Clear all filters

133366-Thumbnail Image.png
Description
The objective of this project was to design an electrically driven centrifugal pump for the Daedalus Astronautics @ASU hybrid rocket engine (HRE). The pump design was purposefully simplified due to time, fabrication, calculation, and capability constraints, which resulted in a lower fidelity design, with the option to be improved later.

The objective of this project was to design an electrically driven centrifugal pump for the Daedalus Astronautics @ASU hybrid rocket engine (HRE). The pump design was purposefully simplified due to time, fabrication, calculation, and capability constraints, which resulted in a lower fidelity design, with the option to be improved later. The impeller, shroud, volute, shaft, motor, and ESC were the main focuses of the pump assembly, but the seals, bearings, lubrication methods, and flow path connections were considered as elements which would require future attention. The resulting pump design is intended to be used on the Daedalus Astronautics HRE test cart for design verification. In the future, trade studies and more detailed analyses should and will be performed before this pump is integrated into the Daedalus Astronautics flight-ready HRE.
ContributorsShillingburg, Ryan Carl (Author) / White, Daniel (Thesis director) / Brunacini, Lauren (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
Description
The fashion industry dubs couture as high fashion, yet couture never reaches the finish line when it comes to comfort. Most of the brand name high heels on the market are too painful to wear for long periods of time. For this project, I have developed 3D printed high heels

The fashion industry dubs couture as high fashion, yet couture never reaches the finish line when it comes to comfort. Most of the brand name high heels on the market are too painful to wear for long periods of time. For this project, I have developed 3D printed high heels with detachable insoles that will relieve tired feet based on the principle of reflexology. The product integrates traditional flexible insoles with Arduino computing and the result is a functional surface that can ease the pain of the wearer. This paper introduces the product and with it, under-explored opportunities to customize your own high heels at home. Essentially, each consumer will have the ability to personalize and switch out their style without sacrificing comfort. Soon, a consumer will be a designer.
ContributorsNguyen, Nhi N. (Author) / Ingalls, Todd (Thesis director) / Gigantino, Josh (Committee member) / Barrett, The Honors College (Contributor) / Herberger Institute for Design and the Arts (Contributor) / School of Arts, Media and Engineering (Contributor)
Created2015-05
136814-Thumbnail Image.png
Description
The goal of this project was to explore biomimetics by creating a jellyfish flying device that uses propulsion of air to levitate while utilizing electromyography signals and infrared signals as mechanisms to control the device. Completing this project would require knowledge of biological signals, electrical circuits, computer programming, and physics

The goal of this project was to explore biomimetics by creating a jellyfish flying device that uses propulsion of air to levitate while utilizing electromyography signals and infrared signals as mechanisms to control the device. Completing this project would require knowledge of biological signals, electrical circuits, computer programming, and physics to accomplish. An EMG sensor was used to obtain processed electrical signals produced from the muscles in the forearm and was then utilized to control the actuation speed of the tentacles. An Arduino microprocessor was used to translate the EMG signals to infrared blinking sequences which would propagate commands through a constructed circuit shield to the infrared receiver on jellyfish. The receiver will then translate the received IR sequence into actions. Then the flying device must produce enough thrust to propel the body upwards. The application of biomimetics would best test my skills as an engineer as well as provide a method of applying what I have learned over the duration of my undergraduate career.
ContributorsTsui, Jessica W (Author) / Muthuswamy, Jitteran (Thesis director) / Blain Christen, Jennifer (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2014-05
136849-Thumbnail Image.png
Description
Analysis of 4 lesson plans for primary education in which 3D printers are used either to build components or are directly used by students. Provides critique on how proper investment and utilization of this new technology can enrich education and misuse can waste time, money, and even reduce the quality

Analysis of 4 lesson plans for primary education in which 3D printers are used either to build components or are directly used by students. Provides critique on how proper investment and utilization of this new technology can enrich education and misuse can waste time, money, and even reduce the quality of education.
ContributorsPrzeslica, Michael Cody (Author) / Adams, James (Thesis director) / Krause, Stephen (Committee member) / Barrett, The Honors College (Contributor) / Materials Science and Engineering Program (Contributor)
Created2014-05
136219-Thumbnail Image.png
Description
This project details a magnetic field detection system that can be mounted on an unmanned aerial vehicle (UAV). The system is comprised of analog circuitry to detect and process the magnetic signals, digital circuitry to sample and store the data outputted from the analog front end, and finally a UAV

This project details a magnetic field detection system that can be mounted on an unmanned aerial vehicle (UAV). The system is comprised of analog circuitry to detect and process the magnetic signals, digital circuitry to sample and store the data outputted from the analog front end, and finally a UAV to carry and mobilize the electronic parts. The system should be able to sense magnetic fields from power transmission lines, enabling the determination of whether or not current is running through the power line.
ContributorsTheoharatos, Dimitrios (Co-author) / Brazones, Ryan (Co-author) / Pagaduan, Patrick (Co-author) / Allee, David (Thesis director) / Karady, George (Committee member) / Barrett, The Honors College (Contributor) / Electrical Engineering Program (Contributor)
Created2015-05
136262-Thumbnail Image.png
Description
The Larynx plays a pivotal role in our ability to breathe and to speak. It is in our best interest to continue improving the status of tissue regeneration concerning the larynx so that patient voice quality of life can be less hindered in the face of laryngeal cancers and diseases.

The Larynx plays a pivotal role in our ability to breathe and to speak. It is in our best interest to continue improving the status of tissue regeneration concerning the larynx so that patient voice quality of life can be less hindered in the face of laryngeal cancers and diseases. Modern technology can allow us to use CT scans for both diagnosis and treatment. This medical imaging can be converted into three-dimensional patient specific models that are actualized through 3D printing. These implants improve upon the current state of the art because they can be produced in a timely manner, are developed with materials and methods ensuring their biocompatibility, and follow architectures and geometries best suited for the patient to improve their voice quality of life. Additionally they should be able to allow patient speech in the case of partial laryngectomies where the arytenoid has been removed by acting as a permanent vocal fold This treatment process for laryngectomies aligns itself with personalized medicine by targeting its geometry based on that of the patient. Technologies and manufacturing processes utilized to produce them are accessible and could all be used within the clinical space. The life-saving implant required for the laryngectomy healing and recovery process can be ready to implant for the patient within a few days of imaging them.
ContributorsBarry, Colin Patrick (Author) / Pizziconi, Vincent (Thesis director) / Lott, David (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2015-05
133566-Thumbnail Image.png
Description
Active pixel sensors hold a lot of promise for space applications in star tracking because of their effectiveness against radiation, small size, and on-chip processing. The research focus is on documenting and validating ground test equipment for these types of sensors. Through demonstrating the utility of a commercial sensor, the

Active pixel sensors hold a lot of promise for space applications in star tracking because of their effectiveness against radiation, small size, and on-chip processing. The research focus is on documenting and validating ground test equipment for these types of sensors. Through demonstrating the utility of a commercial sensor, the research will be able to work on ensuring the accuracy of ground tests. This contribution allows for future research on improving active pixel sensor performance.
ContributorsDotson, Breydan Lane (Author) / White, Daniel (Thesis director) / Jansen, Rolf (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
137263-Thumbnail Image.png
Description
Diabetes mellitus is a disease characterized by many chronic and acute conditions. With the prevalence and cost quickly increasing, we seek to improve on the current standard of care and create a rapid, label free sensor for glycated albumin (GA) index using electrochemical impedance spectroscopy (EIS). The antibody, anti-HA, was

Diabetes mellitus is a disease characterized by many chronic and acute conditions. With the prevalence and cost quickly increasing, we seek to improve on the current standard of care and create a rapid, label free sensor for glycated albumin (GA) index using electrochemical impedance spectroscopy (EIS). The antibody, anti-HA, was fixed to gold electrodes and a sine wave of sweeping frequencies was induced with a range of HA, GA, and GA with HA concentrations. Each frequency in the impedance sweep was analyzed for highest response and R-squared value. The frequency with both factors optimized is specific for both the antibody-antigen binding interactions with HA and GA and was determined to be 1476 Hz and 1.18 Hz respectively in purified solutions. The correlation slope between the impedance response and concentration for albumin (0 \u2014 5400 mg/dL of albumin) was determined to be 72.28 ohm/ln(mg/dL) with an R-square value of 0.89 with a 2.27 lower limit of detection. The correlation slope between the impedance response and concentration for glycated albumin (0 \u2014 108 mg/dL) was determined to be -876.96 ohm/ln(mg/dL) with an R-squared value of 0.70 with a 0.92 mg/dL lower limit of detection (LLD). The above data confirms that EIS offers a new method of GA detection by providing unique correlation with albumin as well as glycated albumin. The unique frequency response of GA and HA allows for modulation of alternating current signals so that several other markers important in the management of diabetes could be measured with a single sensor. Future work will be necessary to establish multimarker sensing on one electrode.
ContributorsEusebio, Francis Ang (Author) / LaBelle, Jeffrey (Thesis director) / Pizziconi, Vincent (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2014-05
DescriptionA look at current 3D printing capabilities, and exploring the potential for additive manufacturing to transform the economy in the future.
ContributorsBennewitz, Chase (Co-author) / Paul, John (Co-author) / Parker, Kerry (Co-author) / Maltz, Arnold (Thesis director) / McDowell, John (Committee member) / Fujinami, Chris (Committee member) / Barrett, The Honors College (Contributor) / Department of Economics (Contributor) / Department of Supply Chain Management (Contributor) / W. P. Carey School of Business (Contributor)
Created2013-05
137067-Thumbnail Image.png
Description
Growing concern over health risks associated with environmental contaminants has prompted an increase in the search for effective detection methods. The available options provide acceptable sensitivity and specificity, but with high purchase and maintenance costs. Herein, a low-cost, portable environmental contaminant sensor was developed using electrochemical techniques and an efficient

Growing concern over health risks associated with environmental contaminants has prompted an increase in the search for effective detection methods. The available options provide acceptable sensitivity and specificity, but with high purchase and maintenance costs. Herein, a low-cost, portable environmental contaminant sensor was developed using electrochemical techniques and an efficient hydrogel capture mechanism. The sensor operates with high sensitivity and maintains specificity without the added requirement of extensive electrode modification. Rather, specificity is obtained by choosing specific potential regions in which individual contaminants show reduction or oxidation activity. A calibration curve was generated showing the utility of the sensor in detecting gas compounds reliably in reference to a current state of the art sensor. Reusability of the sensor was also demonstrated with a cyclic exposure test in which response reversibility was observed. As such, the investigated sensor shows great promise as a replacement technology in the current environmental contaminant detector industry.
ContributorsMarch, Michael Stephen (Author) / LaBelle, Jeffrey (Thesis director) / Caplan, Michael (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Harrington Bioengineering Program (Contributor)
Created2014-05