Matching Items (2)
Filtering by

Clear all filters

148071-Thumbnail Image.png
Description

Hundreds of thousands of people die annually from malaria; a protozoan of the genus Plasmodium is responsible for this mortality. The Plasmodium parasite undergoes several life stages within the mosquito vector, the transition between which require passage across the lumen of the mosquito midgut. It has been observed that in

Hundreds of thousands of people die annually from malaria; a protozoan of the genus Plasmodium is responsible for this mortality. The Plasmodium parasite undergoes several life stages within the mosquito vector, the transition between which require passage across the lumen of the mosquito midgut. It has been observed that in about 15% of parasites that develop ookinetes in the mosquito abdomen, sporozoites never develop in the salivary glands, indicating that passage across the midgut lumen is a significant barrier in parasite development (Gamage-Mendis et al., 1993). We aim to investigate a possible correlation between passage through the midgut lumen and drug-resistance trends in Plasmodium falciparum parasites. This study contains a total of 1024 Anopheles mosquitoes: 187 Anopheles gambiae and 837 Anopheles funestus samples collected in high malaria transmission areas of Mozambique between March and June of 2016. Sanger sequencing will be used to determine the prevalence of known resistance alleles for anti-malarial drugs: chloroquine resistance transporter (pfcrt), multidrug resistance (pfmdr1) gene, dihydropteroate synthase (pfdhps) and dihydrofolate reductase (pfdhfr). We compare prevalence of resistance between abdomen and head/thorax in order to determine whether drug resistant parasites are disproportionately hindered during their passage through the midgut lumen. A statistically significant difference between resistance alleles in the two studied body sections supports the efficacy of new anti-malarial gene surveillance strategies in areas of high malaria transmission.

ContributorsPhillips, Keeley Isabella (Author) / Huijben, Silvie (Thesis director) / Gile, Gillian (Committee member) / Young, Steven (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
131540-Thumbnail Image.png
Description
Despite its well-documented preference for much more humid climates, the yellow fever mosquito, or Aedes aegypti, has inhabited Arizona since 1951. Their presence is of great concern as they can transmit many deadly diseases, including yellow fever, chikungunya, Zika, and dengue fever, putting the residents of the Phoenix Metropolitan Area

Despite its well-documented preference for much more humid climates, the yellow fever mosquito, or Aedes aegypti, has inhabited Arizona since 1951. Their presence is of great concern as they can transmit many deadly diseases, including yellow fever, chikungunya, Zika, and dengue fever, putting the residents of the Phoenix Metropolitan Area at risk. Maricopa County Vector Control has made an extensive effort to reduce this risk mainly through the act of fogging insecticides during the night in areas where mosquito numbers exceed a threshold. However, given the well-known temperature-toxicity relationships in insect species, fogging at night may be less or more effective —depending on the relationship— due to the colder temperatures at these times. Additionally, insecticide resistance testing has always been performed at temperatures not usually experienced during fogging, adding to the uncertainty on how useful those test outcomes are. This study took the first steps in determining the effects of temperature on the toxicity of a commonly used insecticide, deltamethrin, on Aedes aegypti by developing a dose response curve on a lab strain at a standard lab temperature of 25°C by performing a CDC bottle bioassay. The diagnostic dose was found to be 50 μg/mL and the lethal dose, 50% (LD50, the dose required to kill half of the test mosquitoes) was found to be 9 μg/mL. Future testing would need to be completed to compare the deltamethrin dose response curve developed in this study with deltamethrin dose response curves at various different temperatures.
ContributorsEl Sheikha, Mariam D (Co-author) / El Sheikha, Mariam (Co-author) / Paaijmans, Krijn (Thesis director) / Huijben, Silvie (Committee member) / Kalmouni, Joshua (Committee member) / Harrington Bioengineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2020-05