Matching Items (26)
149461-Thumbnail Image.png
Description
This thesis investigates the role of activity visualization tools in increasing group awareness at the workspace. Today, electronic calendaring tools are widely used in the workplace. The primary function is to enable each person maintain a work schedule. They also are used to schedule meetings and share work details when

This thesis investigates the role of activity visualization tools in increasing group awareness at the workspace. Today, electronic calendaring tools are widely used in the workplace. The primary function is to enable each person maintain a work schedule. They also are used to schedule meetings and share work details when appropriate. However, a key limitation of current tools is that they do not enable people in the workplace to understand the activity of the group as a whole. A tool that increases group awareness would promote reflection; it would enable thoughtful engagement with one's co-workers. I have developed two tools: the first tool enables the worker to examine detailed task information of one's own tasks, within the context of his/her peers' anonymized task data. The second tool is a public display to promote group reflection. I have used an iterative design methodology to refine the tools. I developed ActivityStream desktop tool that enables users to examine the detailed information of their own activities and the aggregate information of other peers' activities. ActivityStream uses a client-server architecture. The server collected activity data from each user by parsing RSS feeds associated with their preferred online calendaring and task management tool, on a daily basis. The client software displays personalized aggregate data and user specific tasks, including task types. The client display visualizes the activity data at multiple time scales. The activity data for each user is represented though discrete blocks; interacting with the block will reveal task details. The activity of the rest of the group is anonymized and aggregated. ActivityStream visualizes the aggregated data via Bezier curves. I developed ActivityStream public display that shows a group people's activity levels change over time to promote group reflection. In particular, the public display shows the anonymized task activity data, over the course of one year. The public display visualizes data for each user using a Bezier curve. The display shows data from all users simultaneously. This representation enables users to reflect on the relationships across the group members, over the course of one year. The survey results revealed that users are more aware of their peers' activities in the workspace.
ContributorsZhang, Lu (Author) / Sundaram, Hari (Thesis advisor) / Qian, Gang (Thesis advisor) / Kelliher, Aisling (Committee member) / Arizona State University (Publisher)
Created2010
149440-Thumbnail Image.png
Description
This study investigated the effect of two different preparation methods on hitting performance in a high&ndashfidelity; baseball batting simulation. Novice and expert players participated in one of three conditions: observation (viewing a video of the goal action), visualization (hearing a script of the goal action), or a no&ndashpreparation; control group.

This study investigated the effect of two different preparation methods on hitting performance in a high&ndashfidelity; baseball batting simulation. Novice and expert players participated in one of three conditions: observation (viewing a video of the goal action), visualization (hearing a script of the goal action), or a no&ndashpreparation; control group. Each participant completed three different hitting tasks: pull hit, opposite&ndashfield; hit, and sacrifice fly. Experts had more successful hits, overall, than novices. The number of successful hits was significantly higher for both the observation and visualization conditions than for the control. In most cases, performance was best in the observation condition. Experts demonstrated greater effects from the mental preparation techniques compared to novices. However, these effects were mediated by task difficulty. The difference between experts and novices, as well as the difference between the observation and visualization conditions was greater for the more difficult hitting task (opposite&ndashfield; hitting) than for the easier hitting task (sacrifice fly). These effects of mental preparation were associated with significant changes in batting kinematics (e.g., changes in point of bat/ball contact and swing direction). The results indicate that mental preparation can improve directional hitting ability in baseball with the optimal preparation methods depending on skill&ndashlevel; and task difficulty.
ContributorsNeuman, Brooke Leigh Anne (Author) / Gray, Rob (Thesis advisor) / Branaghan, Russell (Committee member) / Becker, Vaughn (Committee member) / Arizona State University (Publisher)
Created2010
Description
Elizabeth Grumbach, the project manager of the Institute for Humanities Research's Digital Humanities Initiative, shares methodologies and best practices for designing a digital humanities project. The workshop will offer participants an introduction to digital humanities fundamentals, specifically tools and methodologies. Participants explore technologies and platforms that allow scholars of all

Elizabeth Grumbach, the project manager of the Institute for Humanities Research's Digital Humanities Initiative, shares methodologies and best practices for designing a digital humanities project. The workshop will offer participants an introduction to digital humanities fundamentals, specifically tools and methodologies. Participants explore technologies and platforms that allow scholars of all skills levels to engage with digital humanities methods. Participants will be introduced to a variety of tools (including mapping, visualization, data analytics, and multimedia digital publication platforms), and how and why to choose specific applications, platforms, and tools based on project needs.
ContributorsGrumbach, Elizabeth (Author)
Created2018-09-26
157702-Thumbnail Image.png
Description
Images are ubiquitous in communicating complex information about the future. From political messages to extreme weather warnings, they generate understanding, incite action, and inform expectations with real impact today. The future has come into sharp focus in recent years. Issues like climate change, gene editing, and smart cities are pushing

Images are ubiquitous in communicating complex information about the future. From political messages to extreme weather warnings, they generate understanding, incite action, and inform expectations with real impact today. The future has come into sharp focus in recent years. Issues like climate change, gene editing, and smart cities are pushing policy makers, scientists, and designers to rethink how society plans and prepares for tomorrow. While academic and practice communities have increasingly turned their gaze toward the future, little attention is paid to how it is depicted and even less to the role visualization technologies play in depicting it. Visualization technologies are those that transform non-visual information into 2D or 3D imagery and generate depictions of certain phenomena, real or perceived. This research helps to fill this gap by examining the role visualization technologies play in how individuals know and make decisions about the future.

This study draws from three phases of research set in the context of urban development, where images of the future are generated by architects and circulated by built environment professionals to affect client and public decision-making. I begin with a systematic review of professional design literature to identify norms related to visualization. I then conduct in-depth interviews with expert architects to draw out how visualization technologies are used to influence client decision-making. I dive into how different tools manage the future and generate different forms of certainty, uncertainty, persuasion, and risk. Complementing the review and interviews is a case study on ASU at Mesa City Center, a development project aimed at revitalizing downtown Mesa, Arizona. Analysis highlights how project-specific visual tools affect decision-making and the role that client imagination and inference play in understanding and preference. This research unpacks the social, technical, and emotional knowledge embedded in visualization technologies and reveals how they affect decision-making. Information about the future is uniquely mediated by each technology with decision-making bound up in larger sociopolitical processes aimed at reducing uncertainty, building trust, and managing expectations. This suggests that the visual tools we use to depict the future are much more dynamic and influential than they are given credit for.
ContributorsSelkirk, Kaethe (Author) / Selin, Cynthia (Thesis advisor) / Wylie, Ruth (Committee member) / Boradkar, Prasad (Committee member) / Arizona State University (Publisher)
Created2019
158244-Thumbnail Image.png
Description
ABSTRACT



The cold and the flu are two of the most prevalent diseases in the world. Many over the counter (OTC) medications have been created to combat the symptoms of these illnesses. Some medications take a holistic approach by claiming to alleviate a wide range of symptoms, while

ABSTRACT



The cold and the flu are two of the most prevalent diseases in the world. Many over the counter (OTC) medications have been created to combat the symptoms of these illnesses. Some medications take a holistic approach by claiming to alleviate a wide range of symptoms, while others target a specific symptom. As these medications become more ubiquitous within the United State of America (USA), consumers form associations and mental models about the cold/flu field. The goal of Study 1 was to build a Pathfinder network based on the associations consumers make between cold/flu symptoms and medications. 100 participants, 18 years or older, fluent in English, and residing in the USA, completed a survey about the relatedness of cold/flu symptoms to OTC medications. They rated the relatedness on a scale of 1 (highly unrelated) to 7 (highly related) and those rankings were used to build a Pathfinder network that represented the average of those associations. Study 2 was conducted to validate the Pathfinder network. A different set of 90 participants with the same restrictions as those in Study 1 completed a matching associations test. They were prompted to match symptoms and medications they associated closely with each other. Results showered a significant negative correlation between the geodetic distance (the number of links between objects in the Pathfinder network) separating symptoms and medications and frequency of pairing symptoms with medication. This provides evidence of the validity of the Pathfinder network. It was also seen that, higher the relatedness rating between symptoms and medications in Study 1, higher the frequency of pairing symptom to medication in Study 2, and the more directly linked those symptoms and medications were in the Pathfinder network. This network can inform pharmaceutical companies about which symptoms they most closely associate with, who their competitors are, what symptoms they can dominate, and how to market their medications more effectively.
ContributorsTendolkar, Tanvi Gopal (Author) / Branaghan, Russell (Thesis advisor) / Chiou, Erin (Committee member) / Craig, Scotty (Committee member) / Arizona State University (Publisher)
Created2020
156643-Thumbnail Image.png
Description
When looking at drawings of graphs, questions about graph density, community structures, local clustering and other graph properties may be of critical importance for analysis. While graph layout algorithms have focused on minimizing edge crossing, symmetry, and other such layout properties, there is not much known about how these algorithms

When looking at drawings of graphs, questions about graph density, community structures, local clustering and other graph properties may be of critical importance for analysis. While graph layout algorithms have focused on minimizing edge crossing, symmetry, and other such layout properties, there is not much known about how these algorithms relate to a user’s ability to perceive graph properties for a given graph layout. This study applies previously established methodologies for perceptual analysis to identify which graph drawing layout will help the user best perceive a particular graph property. A large scale (n = 588) crowdsourced experiment is conducted to investigate whether the perception of two graph properties (graph density and average local clustering coefficient) can be modeled using Weber’s law. Three graph layout algorithms from three representative classes (Force Directed - FD, Circular, and Multi-Dimensional Scaling - MDS) are studied, and the results of this experiment establish the precision of judgment for these graph layouts and properties. The findings demonstrate that the perception of graph density can be modeled with Weber’s law. Furthermore, the perception of the average clustering coefficient can be modeled as an inverse of Weber’s law, and the MDS layout showed a significantly different precision of judgment than the FD layout.
ContributorsSoni, Utkarsh (Author) / Maciejewski, Ross (Thesis advisor) / Kobourov, Stephen (Committee member) / Sefair, Jorge (Committee member) / Arizona State University (Publisher)
Created2018