Matching Items (10)
Filtering by

Clear all filters

136429-Thumbnail Image.png
Description
Urbanization exposes wildlife to many unfamiliar environmental conditions, including the presence of novel structures and food sources. Adapting to or thriving within such anthropogenic modifications may involve cognitive skills, whereby animals come to solve novel problems while navigating, foraging, etc. The increased presence of humans in urban areas is an

Urbanization exposes wildlife to many unfamiliar environmental conditions, including the presence of novel structures and food sources. Adapting to or thriving within such anthropogenic modifications may involve cognitive skills, whereby animals come to solve novel problems while navigating, foraging, etc. The increased presence of humans in urban areas is an additional environmental challenge that may potentially impact cognitive performance in wildlife. To date, there has been little experimental investigation into how human disturbance affects problem solving in animals from urban and rural areas. Urban animals may show superior cognitive performance in the face of human disturbance, due to familiarity with benign human presence, or rural animals may show greater cognitive performance in response to the heightened stress of unfamiliar human presence. Here, I studied the relationship between human disturbance, urbanization, and the ability to solve a novel foraging problem in wild-caught juvenile house finches (Haemorhous mexicanus). This songbird is a successful urban dweller and native to the deserts of the southwestern United States. In captivity, finches captured from both urban and rural populations were presented with a novel foraging task (sliding a lid covering their typical food dish) and then exposed to regular periods of high or low human disturbance over several weeks before they were again presented with the task. I found that rural birds exposed to frequent human disturbance showed reduced task performance compared to human-disturbed urban finches. This result is consistent with the hypothesis that acclimation to human presence protects urban birds from reduced cognition, unlike rural birds. Some behaviors related to solving the problem (e.g. pecking at and eying the dish) also differed between urban and rural finches, possibly indicating that urban birds were less neophobic and more exploratory than rural ones. However, these results were unclear. Overall, these findings suggest that urbanization and acclimation to human presence can strongly predict avian response to novelty and cognitive challenges.
ContributorsCook, Meghan Olivia (Author) / McGraw, Kevin (Thesis director) / Bimonte-Nelson, Heather (Committee member) / Weaver, Melinda (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2015-05
137110-Thumbnail Image.png
Description
This study sought to identify traits that act as possible predictors of academic science proficiency of highly gifted adolescent students. A combination of cognitive, personality, and conative traits were selected for evaluation as predictors of scientific proficiency using student General Ability Index (GAI), Revised NEO Personality Index (NEO-PI R), and

This study sought to identify traits that act as possible predictors of academic science proficiency of highly gifted adolescent students. A combination of cognitive, personality, and conative traits were selected for evaluation as predictors of scientific proficiency using student General Ability Index (GAI), Revised NEO Personality Index (NEO-PI R), and Kolbe Index scores to evaluate each, respectively. Statistical correlational analyses revealed that high expressions of the conative trait Fact Finder and the personality traits Ideas and Straight-forwardness predicted higher degrees of academic science proficiency. In contrast, lower expressions of the personality traits Excitement Seeking and Order predicted higher degrees of scientific proficiency. Further, stepwise regression confirmed that the NEO-PI R facets of Excitement Seeking and Ideas traits were significant predictors of science proficiency and suggested that the personality trait Vulnerability may also be a predictor. The repeated appearance of the Excitement Seeking and Ideas facets and the dependence of the other identified traits suggests that these traits were the most promising possible predictors of scientific proficiency in highly gifted students and should be the target of future research.
ContributorsRoss, Christian Hamilton (Author) / Lansdowne, Kimberly (Thesis director) / Oakes, Wendy (Committee member) / Young, Michael (Committee member) / Barrett, The Honors College (Contributor) / School of Historical, Philosophical and Religious Studies (Contributor) / Department of Chemistry and Biochemistry (Contributor) / School of Life Sciences (Contributor)
Created2014-05
136859-Thumbnail Image.png
Description
Menopause is reproductive senescence characterized by a loss of ovarian estrogen and progesterone. Women can experience cognitive decline and other negative symptoms with the loss of ovarian hormones (Sherwin, 2006). While hormone therapies (HT) can treat symptoms of menopause and may have neuroprotective properties, such as the potential to decrease

Menopause is reproductive senescence characterized by a loss of ovarian estrogen and progesterone. Women can experience cognitive decline and other negative symptoms with the loss of ovarian hormones (Sherwin, 2006). While hormone therapies (HT) can treat symptoms of menopause and may have neuroprotective properties, such as the potential to decrease the risk of Alzheimer's Disease (Behl & Manthey, 2000), there are many effects of current HTs that are not ideal. Indeed, optimizing conventional HTs has proven complex, indicating a need for alternative therapies. Phytoestrogens are estrogenic compounds found naturally in plants such as soybeans, that could provide new treatment options. Dietary phytoestrogens can benefit memory in the rodent model (Luine, 2006), although the mechanism underlying these effects is unclear. Basal forebrain cholinergic projections have been shown to mediate the cognitive benefits of estrogen (Gibbs, 2010); we hypothesize that phytoestrogens act similarly, via the cholinergic system, to impact memory. We administered varying doses of phytoestrogen-containing diets to ovariectomized female rats, and used the place recognition task to evaluate spatial memory. Brains were then analyzed for choline acetyltransferase (ChAT), the synthesizing enzyme for acetylcholine, in the vertical-diagonal bands (VDB) and the medial septum (MS) of the basal forebrain. Results showed that ChAT cell counts in the VDB were marginally higher with dietary phytoestrogen treatment. Further, VDB ChAT cell counts positively correlated with place recognition performance, indicating that animals with more VDB ChAT neurons exhibited better spatial memory performance. These results suggest that phytoestrogens might act similarly to natural, endogenously circulating estrogens, and identify phytoestrogens as a direction for investigation as a HT.
ContributorsMousa, Abeer Abdul (Author) / Bimonte-Nelson, Heather (Thesis director) / Olive, Foster (Committee member) / Deviche, Pierre (Committee member) / Barrett, The Honors College (Contributor) / School of International Letters and Cultures (Contributor) / W. P. Carey School of Business (Contributor) / School of Life Sciences (Contributor) / School for the Science of Health Care Delivery (Contributor)
Created2014-05
133052-Thumbnail Image.png
Description
The aim of this study was to determine whether IUD administration, with and without the presence of Levo, and with and without the presence of the ovaries, impacts cognition in a rat model. Rats received either Sham or Ovariectomy (Ovx) surgery (removal of the ovaries), plus either no IUD, a

The aim of this study was to determine whether IUD administration, with and without the presence of Levo, and with and without the presence of the ovaries, impacts cognition in a rat model. Rats received either Sham or Ovariectomy (Ovx) surgery (removal of the ovaries), plus either no IUD, a Blank IUD (without Levo), or a Levo-releasing IUD (Levo IUD), enabling us to evaluate the effects of Ovx and the effects of IUD administration on cognition. Two weeks after surgery, all treatment groups were tested on the water radial arm maze, Morris water maze, and visible platform task to evaluate cognition. At sacrifice, upon investigation of the uteri, it was determined that some of the IUDs were no longer present in animals from these groups: Sham\u2014Blank IUD, Ovx\u2014Blank IUD, and Sham\u2014Levo IUD. Results from the remaining three groups showed that compared to Sham animals with no IUDs, Ovx animals with no IUDs had marginally impaired working memory performance, and that Ovx animals with Levo IUDs as compared to Ovx animals with no IUDs had marginally enhanced memory performance, not specific to a particular memory type. Results also showed that Ovx animals with Levo IUDs had qualitatively more cells in their vaginal smears and increased uterine horn weight compared to Ovx animals with no IUDs, suggesting local stimulation of the Levo IUDs to the uterine horns. Overall, these results provide alternative evidence to the hypothesis that the Levo IUD administers Levo in solely a localized manner, and suggests that the possibility for the Levo IUD to affect reproductive cyclicity in ovary-intact animals is not rejected. The potential for the Levo IUD to exert effects on cognition suggests that either the hormone does in fact systemically circulate, or that the Levo IUD administration affects cognition by altering an as yet undetermined hormonal or other feedback between the uterus and the brain.
ContributorsStrouse, Isabel Martha (Author) / Bimonte-Nelson, Heather (Thesis director) / Glenberg, Arthur (Committee member) / Sirianni, Rachael (Committee member) / Conrad, Cheryl (Committee member) / School of Life Sciences (Contributor) / Department of Psychology (Contributor) / Barrett, The Honors College (Contributor)
Created2018-12
135025-Thumbnail Image.png
Description
Estradiol (E2) and Levonorgestrel (Levo) are two hormones commonly used in hormone therapy (HT) to decrease symptoms associated with menopause. Both of these hormones have been shown to have beneficial effects on cognition when given alone in a rodent model of menopause. However, it is unknown whether these hormones, when

Estradiol (E2) and Levonorgestrel (Levo) are two hormones commonly used in hormone therapy (HT) to decrease symptoms associated with menopause. Both of these hormones have been shown to have beneficial effects on cognition when given alone in a rodent model of menopause. However, it is unknown whether these hormones, when taken in combination, are beneficial or harmful to cognition. This is a critically important question given that these hormones are most often given in combination versus separately. This thesis is composed of two studies examining the cognitive effects of E2 and Levo using a rat model of surgical menopause. Study 1 assessed how the dose of E2 treatment in rats impacted cognitive performance, and found that low dose E2 enhanced working memory performance. Next, based on the results from Study 1, Study 2 used low dose E2 in combination with different doses of Levo to examine the cognitive effects of several E2 to Levo ratio combinations. The results from Study 2 demonstrated that the combination of low dose E2 with a high dose of Levo at a 1:2 ratio impaired cognition, and that the ratio currently used in HT, 3:1, may also negatively impact cognition. Indeed, there was a dose response effect indicating that working and reference memory performance was incrementally impaired as Levo dose increased. The findings in this thesis suggest that the E2 plus Levo combination is likely not neutral for cognitive function, and prompts further evaluation in menopausal women, as well as drug discovery research to optimize HT using highly controlled preclinical models.
ContributorsBerns-Leone, Claire Elizabeth (Co-author) / Prakapenka, Alesia (Co-author) / Pena, Veronica (Co-author) / Northup-Smith, Steven (Co-author) / Melikian, Ryan (Co-author) / Ladwig, Ducileia (Co-author) / Patel, Shruti (Co-author) / Croft, Corissa (Co-author) / Bimonte-Nelson, Heather (Thesis director) / Glenberg, Arthur (Committee member) / Conrad, Cheryl (Committee member) / School of Life Sciences (Contributor) / Department of Psychology (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
154061-Thumbnail Image.png
Description
Aging and the menopause transition are both intricately linked to cognitive changes

during mid-life and beyond. Clinical literature suggests the age at menopause onset can differentially impact cognitive status later in life. Yet, little is known about the relationship between behavioral and brain changes that occur during the transitional stage into

Aging and the menopause transition are both intricately linked to cognitive changes

during mid-life and beyond. Clinical literature suggests the age at menopause onset can differentially impact cognitive status later in life. Yet, little is known about the relationship between behavioral and brain changes that occur during the transitional stage into the post-menopausal state. Much of the pre-clinical work evaluating an animal model of menopause involves ovariectomy in rodents; however, ovariectomy results in an abrupt loss of circulating hormones and ovarian tissue, limiting the ability to evaluate gradual follicular depletion. The 4-vinylcyclohexene diepoxide (VCD) model simulates transitional menopause in rodents by selectively depleting the immature ovarian follicle reserve and allowing animals to retain their follicle-deplete ovarian tissue, resulting in a profile similar to the majority of menopausal women. Here, Vehicle or VCD treatment was administered to ovary-intact adult and middle-aged Fischer-344 rats to assess the cognitive effects of transitional menopause via VCD-induced follicular depletion over time, as well as to understand potential interactions with age, with VCD treatment beginning at either six or twelve months of age. Results indicated that subjects that experience menopause onset at a younger age had impaired spatial working memory early in the transition to a follicle-deplete state. Moreover, in the mid- and post- menopause time points, VCD-induced follicular depletion amplified an age effect, whereby Middle-Aged VCD-treated animals had poorer spatial working and reference memory performance than Young VCD-treated animals. Correlations suggested that in middle age, animals with higher circulating estrogen levels tended to perform better on spatial memory tasks. Overall, these findings suggest that the age at menopause onset is a critical parameter to consider when evaluating learning and memory across the transition to reproductive senescence. From a translational perspective, this study informs the field with respect to how the age at menopause onset might impact cognition in menopausal women, as well as provides insight into time points to explore for the window of opportunity for hormone therapy during the menopause transition to attenuate age- and menopause- related cognitive decline, and produce healthy brain aging profiles in women who retain their ovaries throughout the lifespan.
ContributorsKoebele, Stephanie Victoria (Author) / Bimonte-Nelson, Heather A. (Thesis advisor) / Aiken, Leona S. (Committee member) / Conrad, Cheryl D. (Committee member) / Wynne, Clive DL (Committee member) / Arizona State University (Publisher)
Created2015
148087-Thumbnail Image.png
Description

In females, critical hormonal shifts occur during puberty, menstruation, pregnancy, and <br/>menopause. The fluctuating ovarian hormone levels across a woman’s lifespan likely contribute <br/>to inflammatory responses driven by the immune system, which is regulated by a variety of <br/>physiological pathways and microbiological cues. Pregnancy in particular results in drastic <br/>changes

In females, critical hormonal shifts occur during puberty, menstruation, pregnancy, and <br/>menopause. The fluctuating ovarian hormone levels across a woman’s lifespan likely contribute <br/>to inflammatory responses driven by the immune system, which is regulated by a variety of <br/>physiological pathways and microbiological cues. Pregnancy in particular results in drastic <br/>changes in circulating hormone profiles, and involves a variety of physiological changes, <br/>including inflammatory responses of the immune system. There is evidence that these effects are <br/>mediated, in part, by the significant hormone fluctuations that characterize pregnancy and <br/>postpartum periods. This thesis highlights and synthesizes important physiological changes <br/>associated with pregnancy, and their potential implications on cognitive and brain aging in <br/>women. A tertiary model of cognition is presented depicting interactions between hormonal <br/>history, reproductive history, and immune functions. This research is important to create a better <br/>understanding of women’s health and enhance medical care for women throughout pregnancy <br/>and across reproductive hormone shifts across the lifespan.

ContributorsLogan-Robledo, Santiago Rodrigo (Author) / Bimonte-Nelson, Heather A. (Thesis director) / Koebele, Stephanie V. (Committee member) / Simard, Alain (Committee member) / School of Life Sciences (Contributor) / Department of Psychology (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
147641-Thumbnail Image.png
Description

The relevance of depression in the clinical realm is well known, as it is one of the most common mental disorders in the United States. Clinical depression is the leading cause of disease for women worldwide. The sex difference in depression and anxiety has guided the research of not just

The relevance of depression in the clinical realm is well known, as it is one of the most common mental disorders in the United States. Clinical depression is the leading cause of disease for women worldwide. The sex difference in depression and anxiety has guided the research of not just recent studies but older studies as well, supporting the theory that gonadal hormones are associated with the mechanisms of emotional cognition. The scientific literature points towards a clear correlative relationship between gonadal hormones, especially estrogens, and emotion regulation. This thesis investigates the neural pathways that have been indicated to regulate mood and anxiety. Currently, the research points to the hypothalamic-pituitary-adrenal axis, which regulates the stress response through its ultimate secretion of cortisol through the adrenal cortex, and its modulated response when exposed to higher levels of estrogen. Another mechanism that has been investigated is the interaction of estrogen and the serotonergic system, which is noteworthy because the serotonergic system is known for its importance in mood regulation. However, it is important to note that the research seeking to determine the neurobiological underpinnings of estrogen and the serotonergic system is not expansive. Future research should focus on determining the direct relationship between cortisol hypersecretion and estrogens, the specific neurobiological effects of serotonergic receptor subtypes on the antidepressant actions of estrogens, and the simultaneous effects of the stress and serotonergic systems on depressive symptoms.

ContributorsArroyo, Mariana (Author) / Bimonte-Nelson, Heather (Thesis director) / Jurutka, Peter (Committee member) / School of International Letters and Cultures (Contributor) / School of Social and Behavioral Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
157790-Thumbnail Image.png
Description
Progestogens, such as progesterone (P4), medroxyprogesterone acetate (MPA), and micronized progesterone (mP4), are given to ovary-intact women during the transition to menopause to attenuate heavy uterine bleeding and other symptoms. Both progesterone and MPA administration have been shown to impair cognition in ovariectomized (Ovx) rats compared to vehicle-treated controls. mP4,

Progestogens, such as progesterone (P4), medroxyprogesterone acetate (MPA), and micronized progesterone (mP4), are given to ovary-intact women during the transition to menopause to attenuate heavy uterine bleeding and other symptoms. Both progesterone and MPA administration have been shown to impair cognition in ovariectomized (Ovx) rats compared to vehicle-treated controls. mP4, however, has yet to be investigated for cognitive effects in a preclinical setting. Further, progestogens affect the GABA (-aminobutyric acid) ergic system, specifically glutamic acid decarboxylase (GAD) the rate limiting enzyme necessary for synthesizing GABA. The goal of this experiment was to investigate the cognitive impact of P4, MPA, and mP4, in an ovary-intact transitional menopause model using 4-vinylcyclohexene diepoxide (VCD) and assess whether these potential changes were related to the GABAergic system. One group of rats received vehicle injections, and the remainder of the groups received VCD to induce follicular depletion, modeling transitional menopause in women. Vehicle or hormone administration began during perimenopause to model the time period when women often take progestogens alone. Rats then underwent testing to assess spatial working and reference memory in the water radial-arm maze (WRAM) and spatial reference memory in the Morris water maze (MWM). Results indicate that P4 and MPA improved learning for working memory measure, but only MPA impaired memory retention in the WRAM. For the WRAM reference memory measure, VCD only treated rats showed impaired learning and memory retention compared to vehicle controls; progestogens did not impact this impairment. Although GAD expression did not differ between treatment groups, in general, there was a relationship between GAD expression and WRAM performance such that rats that tended to have higher GAD levels also tended to make more WRAM working memory errors. Thus, while P4 and MPA have been previously shown to impair cognition in an Ovx model, giving these hormones early in an ovary-intact perimenopause model elicits divergent effects, such that these progestogens can improve cognition. Additionally, these findings suggest that the cognitive changes seen herein are related to the interaction between progestogens and the GABAergic system. Further investigation into progestogens is warranted to fully understand their impact on cognition given the importance of utilizing progestogens in the clinic.
ContributorsPena, Veronica Leigh (Author) / Bimonte-Nelson, Heather A. (Thesis advisor) / Conrad, Cheryl (Committee member) / Gipson-Reichardt, Cassandra (Committee member) / Arizona State University (Publisher)
Created2019
131942-Thumbnail Image.png
Description
There are currently no disease-modifying treatments to halt or attenuate the progression of Alzheimer’s disease (AD). Transgenic rodent models have provided researchers the ability to recapitulate particular pathological and symptomological events in disease progression. Complete reproduction of all features of AD in a rodent model has not been achieved, potentially

There are currently no disease-modifying treatments to halt or attenuate the progression of Alzheimer’s disease (AD). Transgenic rodent models have provided researchers the ability to recapitulate particular pathological and symptomological events in disease progression. Complete reproduction of all features of AD in a rodent model has not been achieved, potentially lending to the inconclusive treatment results at the clinical level. Recently, the TgF344-AD transgenic rat model has started to be evaluated; however, it has not been well characterized in terms of its cognition, which is fundamental to understanding the trajectory of aging relative to pathology and learning and memory changes. Therefore, the aim of the current study was to identify cognitive outcomes at 6, 9, and 12 months of age in the TgF344-AD rat model. Sixty female transgenic (Tg) and wildtype (WT) rats were tested on the water radial arm maze, Morris water maze, and visible platform task to evaluate cognition. Results from the asymptotic phase of the water radial arm maze showed that the 6 mo-Tg animals had marginally impaired working memory compared to 6 mo-WT rats, and 12 mo-Tg rats had significantly impaired working memory compared to 12 mo-WT rats. The 9 mo-Tg animals did not demonstrate a significant difference in working memory errors compared to the 9 mo-WT animals. This pattern of impairment, wherein Tg animals made more working memory errors compared to WT animals at the 6 and 12 month time points, but not at the 9 month time point, may be indicative of an inflammatory response that proves helpful at incipient stages of disease progression but eventually leads to further cognitive impairment. These results provide insight into the potential earliest time point that prodromal cognitive symptoms of AD exist, and how they progress with aging. Brain tissue was collected at sacrifice for future analyses of pathology, which will be used to glean insight into the temporal progression of pathological and cognitive outcomes.
ContributorsBulen, Haidyn Leigh (Co-author) / Bulen, Haidyn (Co-author) / Bimonte-Nelson, Heather (Thesis director) / Presson, Clark (Committee member) / Conrad, Cheryl (Committee member) / Woner, Victoria (Committee member) / Peña, Veronica (Committee member) / School of International Letters and Cultures (Contributor) / Department of Psychology (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05