Matching Items (9)
Filtering by

Clear all filters

131532-Thumbnail Image.png
Description
Ketone bodies are produced in the liver from the acetyl CoA derived from fatty acids that cannot enter the Krebs cycle. This is a sub-analysis of a larger study which had numerous outcome markers. This analysis focuses on the relationship between ketone blood levels and cognition. The study looked at

Ketone bodies are produced in the liver from the acetyl CoA derived from fatty acids that cannot enter the Krebs cycle. This is a sub-analysis of a larger study which had numerous outcome markers. This analysis focuses on the relationship between ketone blood levels and cognition. The study looked at the relationship between Time Restricted Feeding (TRF), a method of intermittent fasting. TRF is something that can be easily adapted into an individual’s lifestyle and has been shown to have multiple advantages. This 8-week study began with 23 enrolled participants, but due to COVID-19 only 11 participants could be tested for cognition and blood ketone levels after week 4. All participants had similar ranges of weight, height, age, BMI, hip, and waist measurements at baseline. Moreover, these demographic variables were not related to ketone levels or cognition. The data indicate that ketone bodies increased in participants practicing TRF and that the increase in ketone bodies in the blood, specifically β-hydroxybutyrate was strongly correlated to increased cognitive function. This is consistent with theories that elevated ketone levels allowed for early hunter-gather communities and other mammals to survive prolonged periods of nutrient deprivation while keeping high cognitive function.
ContributorsTaha, Basel Mahmoud (Author) / Johnston, Carol (Thesis director) / Karen, Sweazea (Committee member) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
132447-Thumbnail Image.png
Description
The purpose of this study was to develop proposal lesson plans for 4th-6th graders based on active learning to integrate movement physical activity into the curriculum. The 4th-6th graders were chosen, as this is the age where teaching typically transitions from active learning to sedentary/lecture style teaching. Research compiled indicated

The purpose of this study was to develop proposal lesson plans for 4th-6th graders based on active learning to integrate movement physical activity into the curriculum. The 4th-6th graders were chosen, as this is the age where teaching typically transitions from active learning to sedentary/lecture style teaching. Research compiled indicated positive effects of active based learning on children such as increased attention span, retention, and general focus. A survey was created to not only assess the perception of active versus didactic learners, but to also assess the effects of movement-based learning on the variables that research claimed to change. The lesson plans developed here should be transferable to a classroom lesson to evaluate the hypothesized results.
ContributorsTanna, Nimisha (Author) / Hyatt, JP (Thesis director) / Ainsworth, Barbara (Committee member) / College of Health Solutions (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
154061-Thumbnail Image.png
Description
Aging and the menopause transition are both intricately linked to cognitive changes

during mid-life and beyond. Clinical literature suggests the age at menopause onset can differentially impact cognitive status later in life. Yet, little is known about the relationship between behavioral and brain changes that occur during the transitional stage into

Aging and the menopause transition are both intricately linked to cognitive changes

during mid-life and beyond. Clinical literature suggests the age at menopause onset can differentially impact cognitive status later in life. Yet, little is known about the relationship between behavioral and brain changes that occur during the transitional stage into the post-menopausal state. Much of the pre-clinical work evaluating an animal model of menopause involves ovariectomy in rodents; however, ovariectomy results in an abrupt loss of circulating hormones and ovarian tissue, limiting the ability to evaluate gradual follicular depletion. The 4-vinylcyclohexene diepoxide (VCD) model simulates transitional menopause in rodents by selectively depleting the immature ovarian follicle reserve and allowing animals to retain their follicle-deplete ovarian tissue, resulting in a profile similar to the majority of menopausal women. Here, Vehicle or VCD treatment was administered to ovary-intact adult and middle-aged Fischer-344 rats to assess the cognitive effects of transitional menopause via VCD-induced follicular depletion over time, as well as to understand potential interactions with age, with VCD treatment beginning at either six or twelve months of age. Results indicated that subjects that experience menopause onset at a younger age had impaired spatial working memory early in the transition to a follicle-deplete state. Moreover, in the mid- and post- menopause time points, VCD-induced follicular depletion amplified an age effect, whereby Middle-Aged VCD-treated animals had poorer spatial working and reference memory performance than Young VCD-treated animals. Correlations suggested that in middle age, animals with higher circulating estrogen levels tended to perform better on spatial memory tasks. Overall, these findings suggest that the age at menopause onset is a critical parameter to consider when evaluating learning and memory across the transition to reproductive senescence. From a translational perspective, this study informs the field with respect to how the age at menopause onset might impact cognition in menopausal women, as well as provides insight into time points to explore for the window of opportunity for hormone therapy during the menopause transition to attenuate age- and menopause- related cognitive decline, and produce healthy brain aging profiles in women who retain their ovaries throughout the lifespan.
ContributorsKoebele, Stephanie Victoria (Author) / Bimonte-Nelson, Heather A. (Thesis advisor) / Aiken, Leona S. (Committee member) / Conrad, Cheryl D. (Committee member) / Wynne, Clive DL (Committee member) / Arizona State University (Publisher)
Created2015
155539-Thumbnail Image.png
Description
It is widely documented and accepted that athletes have difficulty maintaining adequate hydration status and that dehydration is a key risk factor for the heat-related illnesses commonly observed among athletes. Research has also suggested that hydration status can influence cognitive performance. Educational interventions focused on rehydration strategies have had

It is widely documented and accepted that athletes have difficulty maintaining adequate hydration status and that dehydration is a key risk factor for the heat-related illnesses commonly observed among athletes. Research has also suggested that hydration status can influence cognitive performance. Educational interventions focused on rehydration strategies have had minimal success reducing dehydration rates; hence, alternative interventions promoting adequate hydration status in athletes should be explored. This trial examined the efficacy of a commercial hydration mobile application (app) for reducing dehydration rates in campus athletes. Fifty-eight college students aged 18-40 y, who participated in club-level collegiate athletics were recruited from a large Southwestern university and randomized by team to one of two study arms, the Standard of Care – Education (EDU) or the hydration mobile app (APP), to determine if app technology improved hydration status as compared to traditional education messaging. Twenty-three (79%) in the EDU group and twenty (69%) in the APP group were mildly-dehydrated at baseline based on the three-day averages of hydration assessment (USG 1.010). Moreover, 31% (n=9) and 28% (n=8) of the EDU and APP groups, respectively, were dehydrated (USG 1.020). No significant differences were found between the EDU and APP groups following the intervention. Three-day average post-intervention USG testing showed 76% (n=22) and 72% (n=21) of the EDU and APP groups respectively were at best mildly-dehydrated. Additionally, 28% (n=8) and 17% (n=5) were considered dehydrated. Neither intervention improved hydration status after four weeks of treatment. Further analyses of cognitive measures were conducted by hydration assessment groups at baseline and post-intervention: hydrated (HYD) (USG < 1.020) or dehydrated (DEH) (USG 1.020). No significant differences between hydration status were found between intervention groups. Additionally, no significant improvements were seen for either group, which indicates there is still a need for a novel way to improve hydration status in this population. Multi-dimensional interventions and individualized interventions to improve hydration status in this at-risk population may be more effective. Additional research should be conducted to determine if there is any cognitive performance enhancement associated with dehydration or mild-dehydration by reassessing previous data and conducting future trials.
ContributorsZemek, Kate A (Author) / Johnston, Carol (Thesis advisor) / Hekler, Eric (Committee member) / Mayol-Kreiser, Sandra (Committee member) / Ransdell, Lynda (Committee member) / Swan, Pamela (Committee member) / Arizona State University (Publisher)
Created2017
148087-Thumbnail Image.png
Description

In females, critical hormonal shifts occur during puberty, menstruation, pregnancy, and <br/>menopause. The fluctuating ovarian hormone levels across a woman’s lifespan likely contribute <br/>to inflammatory responses driven by the immune system, which is regulated by a variety of <br/>physiological pathways and microbiological cues. Pregnancy in particular results in drastic <br/>changes

In females, critical hormonal shifts occur during puberty, menstruation, pregnancy, and <br/>menopause. The fluctuating ovarian hormone levels across a woman’s lifespan likely contribute <br/>to inflammatory responses driven by the immune system, which is regulated by a variety of <br/>physiological pathways and microbiological cues. Pregnancy in particular results in drastic <br/>changes in circulating hormone profiles, and involves a variety of physiological changes, <br/>including inflammatory responses of the immune system. There is evidence that these effects are <br/>mediated, in part, by the significant hormone fluctuations that characterize pregnancy and <br/>postpartum periods. This thesis highlights and synthesizes important physiological changes <br/>associated with pregnancy, and their potential implications on cognitive and brain aging in <br/>women. A tertiary model of cognition is presented depicting interactions between hormonal <br/>history, reproductive history, and immune functions. This research is important to create a better <br/>understanding of women’s health and enhance medical care for women throughout pregnancy <br/>and across reproductive hormone shifts across the lifespan.

ContributorsLogan-Robledo, Santiago Rodrigo (Author) / Bimonte-Nelson, Heather A. (Thesis director) / Koebele, Stephanie V. (Committee member) / Simard, Alain (Committee member) / School of Life Sciences (Contributor) / Department of Psychology (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
147641-Thumbnail Image.png
Description

The relevance of depression in the clinical realm is well known, as it is one of the most common mental disorders in the United States. Clinical depression is the leading cause of disease for women worldwide. The sex difference in depression and anxiety has guided the research of not just

The relevance of depression in the clinical realm is well known, as it is one of the most common mental disorders in the United States. Clinical depression is the leading cause of disease for women worldwide. The sex difference in depression and anxiety has guided the research of not just recent studies but older studies as well, supporting the theory that gonadal hormones are associated with the mechanisms of emotional cognition. The scientific literature points towards a clear correlative relationship between gonadal hormones, especially estrogens, and emotion regulation. This thesis investigates the neural pathways that have been indicated to regulate mood and anxiety. Currently, the research points to the hypothalamic-pituitary-adrenal axis, which regulates the stress response through its ultimate secretion of cortisol through the adrenal cortex, and its modulated response when exposed to higher levels of estrogen. Another mechanism that has been investigated is the interaction of estrogen and the serotonergic system, which is noteworthy because the serotonergic system is known for its importance in mood regulation. However, it is important to note that the research seeking to determine the neurobiological underpinnings of estrogen and the serotonergic system is not expansive. Future research should focus on determining the direct relationship between cortisol hypersecretion and estrogens, the specific neurobiological effects of serotonergic receptor subtypes on the antidepressant actions of estrogens, and the simultaneous effects of the stress and serotonergic systems on depressive symptoms.

ContributorsArroyo, Mariana (Author) / Bimonte-Nelson, Heather (Thesis director) / Jurutka, Peter (Committee member) / School of International Letters and Cultures (Contributor) / School of Social and Behavioral Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
187550-Thumbnail Image.png
Description
Fish oil has been extensively researched for its protective effects on cognition. More recently, anthocyanins have also gained the attention of the medical community for their potential cognitive benefits. Maqui berries are one of the richest sources of anthocyanins known to science. While there are many randomized controlled trials (RCT)

Fish oil has been extensively researched for its protective effects on cognition. More recently, anthocyanins have also gained the attention of the medical community for their potential cognitive benefits. Maqui berries are one of the richest sources of anthocyanins known to science. While there are many randomized controlled trials (RCT) investigating the effects of fish oil and/or anthocyanins on cognition in various populations, there are no RCT that exclusively investigate the cognitive effects of these compounds in adults with Type 2 Diabetes (DM2). The purpose of this double-blinded, placebo-controlled RCT was to investigate the cognitive effects of maqui berry extract and fish oil supplements in adults with DM2 over the course of eight weeks. Adults with DM2 (n=29) were recruited by the researchers and randomized to either Group A or Group B. Because the study is ongoing, it is unknown which group received the intervention. The study used the Stroop Test and Trail Making Test (TMT) to measure cognition at baseline, 4 weeks, and 8 weeks. Anthropometrics, blood glucose, and hemoglobin A1C were also taken at these time points. Sixteen female participants were included in the final analysis. Neither group showed significant improvements in the cognitive tests. However, in Group A, the effect sizes were large for the change in Trail-Making Test A (0.167), Trail Making Test B (0.261), and Trail Making Test B minus A (0.296) scores. In Group A, the change in Trail Making Test B minus A scores between baseline and week 4, and between baseline and week 8 was significant (p=0.053) and produced a large effect size (0.258). The results suggest that fish oil and maqui berry extract may improve cognition in adults with DM2, but further studies with larger sample sizes are needed.
ContributorsDeimeke, Allyson (Author) / Johnston, Carol (Thesis advisor) / Grant, Shauna (Committee member) / Sweazea, Karen (Committee member) / Arizona State University (Publisher)
Created2023
157790-Thumbnail Image.png
Description
Progestogens, such as progesterone (P4), medroxyprogesterone acetate (MPA), and micronized progesterone (mP4), are given to ovary-intact women during the transition to menopause to attenuate heavy uterine bleeding and other symptoms. Both progesterone and MPA administration have been shown to impair cognition in ovariectomized (Ovx) rats compared to vehicle-treated controls. mP4,

Progestogens, such as progesterone (P4), medroxyprogesterone acetate (MPA), and micronized progesterone (mP4), are given to ovary-intact women during the transition to menopause to attenuate heavy uterine bleeding and other symptoms. Both progesterone and MPA administration have been shown to impair cognition in ovariectomized (Ovx) rats compared to vehicle-treated controls. mP4, however, has yet to be investigated for cognitive effects in a preclinical setting. Further, progestogens affect the GABA (-aminobutyric acid) ergic system, specifically glutamic acid decarboxylase (GAD) the rate limiting enzyme necessary for synthesizing GABA. The goal of this experiment was to investigate the cognitive impact of P4, MPA, and mP4, in an ovary-intact transitional menopause model using 4-vinylcyclohexene diepoxide (VCD) and assess whether these potential changes were related to the GABAergic system. One group of rats received vehicle injections, and the remainder of the groups received VCD to induce follicular depletion, modeling transitional menopause in women. Vehicle or hormone administration began during perimenopause to model the time period when women often take progestogens alone. Rats then underwent testing to assess spatial working and reference memory in the water radial-arm maze (WRAM) and spatial reference memory in the Morris water maze (MWM). Results indicate that P4 and MPA improved learning for working memory measure, but only MPA impaired memory retention in the WRAM. For the WRAM reference memory measure, VCD only treated rats showed impaired learning and memory retention compared to vehicle controls; progestogens did not impact this impairment. Although GAD expression did not differ between treatment groups, in general, there was a relationship between GAD expression and WRAM performance such that rats that tended to have higher GAD levels also tended to make more WRAM working memory errors. Thus, while P4 and MPA have been previously shown to impair cognition in an Ovx model, giving these hormones early in an ovary-intact perimenopause model elicits divergent effects, such that these progestogens can improve cognition. Additionally, these findings suggest that the cognitive changes seen herein are related to the interaction between progestogens and the GABAergic system. Further investigation into progestogens is warranted to fully understand their impact on cognition given the importance of utilizing progestogens in the clinic.
ContributorsPena, Veronica Leigh (Author) / Bimonte-Nelson, Heather A. (Thesis advisor) / Conrad, Cheryl (Committee member) / Gipson-Reichardt, Cassandra (Committee member) / Arizona State University (Publisher)
Created2019
132367-Thumbnail Image.png
Description
Previous research has determined that sentence comprehension is affected when taxing an individual’s cognitive resources, such as attentional control and working memory. This can be done by manipulating the prosody of simple and complex sentences, by allowing irregular rhythm and pitch changes to occur within speech. In the present thesis,

Previous research has determined that sentence comprehension is affected when taxing an individual’s cognitive resources, such as attentional control and working memory. This can be done by manipulating the prosody of simple and complex sentences, by allowing irregular rhythm and pitch changes to occur within speech. In the present thesis, neurotypical adults were asked to comprehend sentences with normal and monotone prosody in three different versions of a sentence-picture matching task. A no-load version served as a control with the other two taxing cognitive resources in these individuals. In addition, individuals completed four other tasks that are known to reliably measure working memory. Our results indicate a possible relationship between high accuracy in complex sentences spoken in a monotone prosody with working memory when time restraints are placed on individuals. Collectively, these results may lead to a new way of working with individuals in speech therapy who have suffered a stroke by better understanding the cognitive resources that are taxed in different types of sentence comprehension settings.
ContributorsRehwalt, Cassandra Kay (Author) / Rogalsky, Corianne (Thesis director) / Azuma, Tamiko (Committee member) / Watts College of Public Service & Community Solut (Contributor) / College of Health Solutions (Contributor, Contributor) / Division of Teacher Preparation (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05