Matching Items (6)

Filtering by

Clear all filters

133008-Thumbnail Image.png

Examining the Effects of Exercise Level on Cognition, Perception, and Emotional Response Modulation

Description

Physical activity is something that everyone engages in at varying levels. It has been linked to positively impacting general wellbeing, as well as preparing the mind and body to learn new skills. However, the significance of physical activity

Physical activity is something that everyone engages in at varying levels. It has been linked to positively impacting general wellbeing, as well as preparing the mind and body to learn new skills. However, the significance of physical activity remains under-explored in some areas. The purpose of this study was to determine the relationship between physical activity levels and emotional intelligence, navigation and planning skills, motor skills, memory capacity, and one’s perception of the ‘value’ of an object or an experience. During sessions, participants were equipped with two physiological sensors: the EEG B-Alert X10 or X24 headset, and the Shimmer GSR3. In addition to these, two external sensors were used: a web camera for recording and evaluating facial expressions, and the Tobii X2-30, X2-60, or Tobii T60XL eye tracking systems, used to monitor visual attention. These sensors were used to collect data while participants completed a series of tasks: the Self-Report of Emotional Intelligence Test, the Tower of London Test, the Motor Speed Test, the Working Memory Capacity Battery, watching product-centered videos, and watching experience-centered videos. Multiple surveys were also conducted, including a demographic survey, a nutritional and health survey, and a sports preference survey. Utilizing these metrics, this study found that those who exercise more experience and express higher levels of emotion, including joy, sadness, contempt, disgust, confusion, frustration, surprise, anger, and fear. This implies a difference in emotional response modulation between those who exercise more and those who exercise less, which in turn implies a difference in perception between the two groups. There were no significant findings related to navigation and planning skills, motor skills, or memory capacity from this analysis.

Contributors

Created

Date Created
2019-05

134430-Thumbnail Image.png

On Memory and Physiological Signals of Experts and Novices-Case Study: Chess

Description

Abstract Chess has been a common research topic for expert-novice studies and thus for learning science as a whole because of its limited framework and longevity as a game. One factor is that chess studies are good at measuring how

Abstract Chess has been a common research topic for expert-novice studies and thus for learning science as a whole because of its limited framework and longevity as a game. One factor is that chess studies are good at measuring how expert chess players use their memory and skills to approach a new chessboard con�guration. Studies have shown that chess skill is based on memory, speci�cally, "chunks" of chess piece positions that have been previously encountered by players. However, debate exists concerning how these chunks are constructed in players' memory. These chunks could be constructed by proximity of pieces on the chessboard as well as their precise location or constructed through attack-defense relations. The primary objective of this study is to support which one is more in line with chess players' actual chess abilities based off their memory, proximity or attack/defense. This study replicates and extends an experiment conducted by McGregor and Howe (2002), which explored the argument that pieces are primed more by attack and defense relations than by proximity. Like their study, the present study examined novice and expert chess players' response times for correct and error responses by showing slides of game configurations. In addition to these metrics, the present study also incorporated an eye-tracker to measure visual attention and EEG to measure affective and cognitive states. They were added to allow the comparison of subtle and unconscious behaviors of both novices and expert chess players. Overall, most McGregor and Howe's (2002) results were replicated supporting their theory on chess expertise. This included statistically significance for skill in the error rates with the mean error rates on the piece recognition tests were 70.1% for novices and 87.9% for experts, as well as significance for the two-way interaction for relatedness and proximity with error rates of 22.4% for unrelated/far, 18.8% for related/far, 15.8% for unrelated
ear, and 29.3% for related
ear. Unfortunately, there were no statistically significance for any of the response time effects, which McGregor and Howe found for the interaction between skill and proximity. Despite eye-tracking and EEG data not either support nor confirm McGregor and Howe's theory on how chess players memorize chessboard configurations, these metrics did help build a secondary theory on how novices typically rely on proximity to approach chess and new visual problems in general. This was exemplified by the statistically significant results for short-term excitement for the two-way interaction of skill and proximity, where the largest short-term excitement score was between novices on near proximity slides. This may indicate that novices, because they may lean toward using proximity to try to recall these pieces, experience a short burst of excitement when the pieces are close to each other because they are more likely to recall these configurations.

Contributors

Agent

Created

Date Created
2017-05

147641-Thumbnail Image.png

The Importance of Studying Interactions With Ovarian Hormones: Implications for Depressive Symptoms in Premenopausal and Menopausal Women

Description

The relevance of depression in the clinical realm is well known, as it is one of the most common mental disorders in the United States. Clinical depression is the leading cause of disease for women worldwide. The sex difference in

The relevance of depression in the clinical realm is well known, as it is one of the most common mental disorders in the United States. Clinical depression is the leading cause of disease for women worldwide. The sex difference in depression and anxiety has guided the research of not just recent studies but older studies as well, supporting the theory that gonadal hormones are associated with the mechanisms of emotional cognition. The scientific literature points towards a clear correlative relationship between gonadal hormones, especially estrogens, and emotion regulation. This thesis investigates the neural pathways that have been indicated to regulate mood and anxiety. Currently, the research points to the hypothalamic-pituitary-adrenal axis, which regulates the stress response through its ultimate secretion of cortisol through the adrenal cortex, and its modulated response when exposed to higher levels of estrogen. Another mechanism that has been investigated is the interaction of estrogen and the serotonergic system, which is noteworthy because the serotonergic system is known for its importance in mood regulation. However, it is important to note that the research seeking to determine the neurobiological underpinnings of estrogen and the serotonergic system is not expansive. Future research should focus on determining the direct relationship between cortisol hypersecretion and estrogens, the specific neurobiological effects of serotonergic receptor subtypes on the antidepressant actions of estrogens, and the simultaneous effects of the stress and serotonergic systems on depressive symptoms.

Contributors

Created

Date Created
2021-05

152496-Thumbnail Image.png

Before-school running-walking club: effects on physical activity and on-task behavior

Description

Background: Childhood obesity is one of the most serious public health concerns in the United States and has been associated with low levels of physical activity. Schools are ideal physical activity promotion sites but school physical activity opportunities have decreased

Background: Childhood obesity is one of the most serious public health concerns in the United States and has been associated with low levels of physical activity. Schools are ideal physical activity promotion sites but school physical activity opportunities have decreased due the increased focus on academic performance. Before-school programs provide a good opportunity for children to engage in physical activity as well as improve their readiness to learn. Purpose: The purpose of this study was to examine the effect of a before-school running/walking club on children's physical activity and on-task behavior. Methods: Participants were third and fourth grade children from two schools in the Southwestern United States who participated in a before-school running/walking club that met two times each week. The study employed a two-phase experimental design with an initial baseline phase and an alternating treatments phase. Physical activity was monitored using pedometers and on-task behavior was assessed through systematic observation. Data analysis included visual analysis, descriptive statistics, as well as multilevel modeling. Results: Children accumulated substantial amounts of physical activity within the before-school program (School A: 1731 steps, 10:02 MVPA minutes; School B: 1502 steps, 8:30 MVPA minutes) and, on average, did not compensate by decreasing their physical activity during the rest of the school day. Further, on-task behavior was significantly higher on days the children attended the before-school program than on days they did not (School A=15.78%, pseudo-R2=.34 [strong effect]; School B=14.26%, pseudo-R2=.22 [moderate effect]). Discussion: Results provide evidence for the positive impact of before-school programs on children's physical activity and on-task behavior. Such programs do not take time away from academics and may be an attractive option for schools.

Contributors

Agent

Created

Date Created
2014

135049-Thumbnail Image.png

Sit-to-stand task with physical and cognitive perturbations: A comparison of linear and nonlinear methods of analyzing postural data

Description

Variability is inherent in human movement, and poses a challenge to researchers attempting to measure balance. Human movement variability was analyzed using two methods: standard deviation and largest Lyapunov exponent. The experiment was a sit-to-stand task with physical and cognitive

Variability is inherent in human movement, and poses a challenge to researchers attempting to measure balance. Human movement variability was analyzed using two methods: standard deviation and largest Lyapunov exponent. The experiment was a sit-to-stand task with physical and cognitive perturbations. The physical perturbation consisted of stable and unstable platform conditions, while the cognitive perturbation consisted of a counting task. The data were collected from 24 healthy young adults. The purpose of this study was to compare the standard deviation and largest Lyapunov exponent as measures of stability, and to determine the Lyapunov exponent's sensitivity to cognitive perturbation. Evidence suggests that the Lyapunov exponent serves as a more accurate indicator of stability than standard deviation, and that it lacks sensitivity to the counting task.

Contributors

Agent

Created

Date Created
2016-12

153437-Thumbnail Image.png

Cognitive control processes underlying continuous and transient monitoring processes in event-based prospective memory

Description

A converging operations approach using response time distribution modeling was adopted to better characterize the cognitive control dynamics underlying ongoing task cost and cue detection in event based prospective memory (PM). In Experiment 1, individual differences analyses revealed that working

A converging operations approach using response time distribution modeling was adopted to better characterize the cognitive control dynamics underlying ongoing task cost and cue detection in event based prospective memory (PM). In Experiment 1, individual differences analyses revealed that working memory capacity uniquely predicted nonfocal cue detection, while proactive control and inhibition predicted variation in ongoing task cost of the ex-Gaussian parameter associated with continuous monitoring strategies (mu). In Experiments 2A and 2B, quasi-experimental techniques aimed at identifying the role of proactive control abilities in PM monitoring and cue detection suggested that low ability participants may have PM deficits during demanding tasks due to inefficient monitoring strategies, but that emphasizing importance of the intention can increase reliance on more efficacious monitoring strategies that boosts performance (Experiment 2A). Furthermore, high proactive control ability participants are able to efficiently regulate their monitoring strategies under scenarios that do not require costly monitoring for successful cue detection (Experiment 2B). In Experiments 3A and 3B, it was found that proactive control benefited cue detection in interference-rich environments, but the neural correlates of cue detection or intention execution did not differ when engaged in proactive versus reactive control. The results from the current set of studies highlight the importance of response time distribution modeling in understanding PM cost. Additionally, these results have important implications for extant theories of PM and have considerable applied ramifications concerning the cognitive control processes that should be targeted to improve PM abilities.

Contributors

Agent

Created

Date Created
2015