Matching Items (8)
Filtering by

Clear all filters

152973-Thumbnail Image.png
Description
Studies of ancient pathogens are moving beyond simple confirmatory analysis of diseased bone; bioarchaeologists and ancient geneticists are posing nuanced questions and utilizing novel methods capable of confronting the debates surrounding pathogen origins and evolution, and the relationships between humans and disease in the past. This dissertation examines two ancient

Studies of ancient pathogens are moving beyond simple confirmatory analysis of diseased bone; bioarchaeologists and ancient geneticists are posing nuanced questions and utilizing novel methods capable of confronting the debates surrounding pathogen origins and evolution, and the relationships between humans and disease in the past. This dissertation examines two ancient human diseases through molecular and bioarchaeological lines of evidence, relying on techniques in paleogenetics and phylogenetics to detect, isolate, sequence and analyze ancient and modern pathogen DNA within an evolutionary framework. Specifically this research addresses outstanding issues regarding a) the evolution, origin and phylogenetic placement of the pathogen causing skeletal tuberculosis in New World prior to European contact, and b) the phylogeny and origins of the parasite causing the human leishmaniasis disease complex. An additional chapter presents a review of the major technological and theoretical advances in ancient pathogen genomics to frame the contributions of this work within a rapidly developing field. This overview emphasizes that understanding the evolution of human disease is critical to contextualizing relationships between humans and pathogens, and the epidemiological shifts observed both in the past and in the present era of (re)emerging infectious diseases. These questions continue to be at the forefront of not only pathogen research, but also

bioarchaeological and paleopathological scholarship.
ContributorsHarkins, Kelly M (Author) / Buikstra, Jane E. (Thesis advisor) / Stone, Anne C (Thesis advisor) / Knudson, Kelly (Committee member) / Kumar, Sudhir (Committee member) / Krause, Johannes (Committee member) / Arizona State University (Publisher)
Created2014
131530-Thumbnail Image.png
Description
Accurately predicting local ranges of isotopic signatures in human populations is essential for answering questions about past migrations and mobility. While local ranges of δ18O can be estimated using modern baseline samples and precipitation models, there are many environmental and anthropogenic drivers that can cause these ranges to deviate

Accurately predicting local ranges of isotopic signatures in human populations is essential for answering questions about past migrations and mobility. While local ranges of δ18O can be estimated using modern baseline samples and precipitation models, there are many environmental and anthropogenic drivers that can cause these ranges to deviate from the ranges seen in human populations. This study performs a geostatistical meta-analysis on a large dataset (n = 1,370) of spatially contextualized archaeological δ18O samples from 30 publications in order to generate a predictive model of local human δ18O ranges in the Central Andes. Two models were generated, one using archaeological samples of both humans and fauna, and the other using only humans. The model using only human samples makes more accurate predictions, cautioning against the incorporation of faunal δ18O samples in studies of human provenance. The models are also compared against a model of δ18O values found in precipitation across the study area, and significant differences lead to the conclusion that precipitation models are insufficient for predicting local human δ18O ranges.
ContributorsHatley, Camden Miller (Author) / Knudson, Kelly (Thesis director) / Scaffidi, Beth (Committee member) / School of Earth and Space Exploration (Contributor) / School of Human Evolution & Social Change (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
135829-Thumbnail Image.png
Description
Isotopic analyses of archaeological and modern materials are commonly used to reconstruct diet, climate, and habitat. This study analyzes 15 camelid samples from three sites (two archaeological, one modern) in South America to determine their carbon and nitrogen isotopic values to further explore the relationship between stable isotopes and environments.

Isotopic analyses of archaeological and modern materials are commonly used to reconstruct diet, climate, and habitat. This study analyzes 15 camelid samples from three sites (two archaeological, one modern) in South America to determine their carbon and nitrogen isotopic values to further explore the relationship between stable isotopes and environments. Camelid individuals in the modern site of Cuenca, Ecuador had a diet of almost entirely C3 vegetation, while those in Chen Chen, Peru had slightly higher values, still consistent with C3 plants. Those in the higher altitude site of Pumapunku, Bolivia had higher δ13C values than expected, indicating they may have been foddered with a mixed diet. These isotopic data indicate that vegetation, and therefore herbivore diets, are influenced by altitude. Additionally, it was found that a positive linear relationship exists between δ15N values and aridity of a site. Results indicate that aspects of the environment such as aridity are reflected in isotopic signatures. These results contribute to the increasing amount of data on isotopic variation in South American camelids, both modern and archaeological.
ContributorsSpencer, Katherine Clare (Author) / Knudson, Kelly (Thesis director) / Reed, Kaye (Committee member) / School of Human Evolution and Social Change (Contributor) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
136438-Thumbnail Image.png
Description
Paleodietary analysis through the interpretation of stable isotopic analyses can be used to determine the approximate diet consumed at archaeological sites. The following question was investigated through the course of this research: What are the differences between the Middle Horizon capital of Tiwanaku and the associated colony of Chen Chen;

Paleodietary analysis through the interpretation of stable isotopic analyses can be used to determine the approximate diet consumed at archaeological sites. The following question was investigated through the course of this research: What are the differences between the Middle Horizon capital of Tiwanaku and the associated colony of Chen Chen; and what do these differences, including those associated with paleodiet, suggest about interactions between the two sites? The main hypothesis suggested a similar dietary analysis between the two sites with two possible explanations. First, it is possible that similarities between the sites were due to the exchange and consumption of goods at both locations, perhaps through trade. Secondly, it is possible that the similarities were due to the acquisition of similar goods through local sourcing or limited trade. To assess this, an analysis was conducted based on δ13Cdiet (VPDB) values in the comparison of the city center Tiwanaku and the agricultural site of Chen Chen. Archaeological bone samples were processed from a diverse group of individuals at Chen Chen and combined with published values by Tomczak (2001), then compared against δ13C from Tiwanaku, published by Berryman (2010). After conversion to δ13Cdiet (VPDB) as described by Kellner and Schoeninger (2007), it was determined that there was no statistically significant difference between the δ13Cdiet (VPDB) values from either site, suggesting a similar ratio of goods consumed. These values were then compared to baseline values from the region to determine an approximate ratio of C3 to C4 flora or dependent fauna consumed. These data most likely support the second explanation of the main hypothesis, that both sites had access to similar goods through local sourcing or limited trade as an explanation for their similarity. However, because a similar ratio of foods consumed was determined in this analysis, it is still possible that trade occurred in both directions between Tiwanaku and Chen Chen. Additional isotopic analyses would be required to support the first claim, which can be addressed in future research projects.
ContributorsDouglas, Brynn Babette (Author) / Knudson, Kelly (Thesis director) / Spielmann, Katherine (Committee member) / Barrett, The Honors College (Contributor) / School of Human Evolution and Social Change (Contributor) / School of Life Sciences (Contributor)
Created2015-05
134617-Thumbnail Image.png
Description
Objectives: The objective of this research is to develop a better understanding of the ways in which Transition Analysis estimates differ from traditional estimates in terms of age-at-death point estimation and inter-observer error. Materials and methods: In order to achieve the objectives of the research, 71 adult individuals from an

Objectives: The objective of this research is to develop a better understanding of the ways in which Transition Analysis estimates differ from traditional estimates in terms of age-at-death point estimation and inter-observer error. Materials and methods: In order to achieve the objectives of the research, 71 adult individuals from an archaeological site in northern Sudan were subjected to Transition Analysis age estimation by the author, a beginner-level osteologist. These estimates were compared to previously produced traditional multifactorial age estimates for these individuals, as well as a small sample of Transition Analysis estimates produced by an intermediate-level investigator. Results: Transition Analysis estimates do not have a high correlation with traditional estimates of age at death, especially when those estimates fall within middle or old adult age ranges. The misalignment of beginner- and intermediate-level Transition Analysis age estimations calls into question intra-method as well as inter-method replicability of age estimations. Discussion: Although the poor overall correlation of Transition Analysis estimates and traditional estimates in this study might be blamed on the relatively low experience level of the analyst, the results cast doubt on the replicability of Transition Analysis estimations, echoing the Bethard's (2005) results on a known-age sample. The results also question the validity of refined age estimates produced for individuals previously estimated to be in the 50+ age range by traditional methods and suggest that Transition Analysis tends to produce younger estimates than its traditional counterparts. Key words: age estimation, Transition Analysis, human osteology, observer error
ContributorsPhillips, Megann M. (Author) / Baker, Brenda (Thesis director) / Norris, Annie Laurie (Committee member) / School of International Letters and Cultures (Contributor) / School of Human Evolution and Social Change (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
133051-Thumbnail Image.png
Description
As a child passes through the birth canal, they become inoculated with vital gram positive and gram-negative bacteria, aerobes and anaerobes. Breast milk helps to support this growing microbiome by providing oligosaccharides that support its proliferation. Breast milk can be considered the most nutritious source of food available to a

As a child passes through the birth canal, they become inoculated with vital gram positive and gram-negative bacteria, aerobes and anaerobes. Breast milk helps to support this growing microbiome by providing oligosaccharides that support its proliferation. Breast milk can be considered the most nutritious source of food available to a growing infant by providing the necessary nutrients, growth hormones and antibodies to promote digestive health, growth, and a strong immune system. The Developmental Origins of Health and Disease Theory (DOHaD) is a theory that suggests a growing fetus and nursing child's nutrients and immune system are dependent on the mother's exposure to nutrients and toxins. Studies have shown a positive correlation between the length of nursing and a child's overall health through life. In addition, consuming an enriched diet after weaning builds a strong immunological and nutritional basis from which the child can grow. This leads to improvements in a child's overall health, which has beneficial long-term effects on morbidity and mortality. This project applied the theory to two Middle Horizon (AD500-1100) individuals from Akapana, Tiwanaku, in the Lake Titicaca Basin, Bolivia. Stable nitrogen and carbon isotope analysis was applied to first molar serial samples of these two individuals to determine weaning age and early childhood diet. Both individuals were male; one male died in adolescence between the age of 9-15 years, and the other died as an elderly adult around the age of 50-59 years. The results showed that the male who died in adulthood was provisioned with supplemental and post-weaning foods high in animal protein, and received breast milk until around 37 months of age. The adolescent male was weaned between 11-12 months and consumed a diet dominated by C4 plants \u2014 most likely maize \u2014 with much less protein. The correlation between prolonged access to breast milk and a healthier and more nutritious childhood diet and longevity are consistent with the theory discussed above.
ContributorsCampbell, Sibella Sweelin (Author) / Knudson, Kelly (Thesis director) / Marsteller, Sara (Committee member) / Greenwald, Alexandra (Committee member) / School of Human Evolution & Social Change (Contributor) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-12
148407-Thumbnail Image.png
Description

This paper will cover a variety of stable isotope systems, both light and heavy, that are used to interpret isotopic analysis in two different disciplines: bioarchaeology and forensic anthropology. To begin, I will give short histories of both bioarchaeology and forensic anthropology, including what is considered to be the beginning

This paper will cover a variety of stable isotope systems, both light and heavy, that are used to interpret isotopic analysis in two different disciplines: bioarchaeology and forensic anthropology. To begin, I will give short histories of both bioarchaeology and forensic anthropology, including what is considered to be the beginning of the disciplines as well as the founders of said disciplines. Following the histories of the disciplines, there will be a short background in isotopes and isotopic analysis, including an introduction to isoscapes and how isotopic data can be collected for further interpretation. There will then be an introduction to light isotopes, focusing on the ones used for this thesis, which will lead into the background of each light isotope. Following the light isotopes is an introduction to the heavy isotopes and the backgrounds of each of the heavy isotopes. Finally, this thesis will end in the conclusions section.

ContributorsFranco, Kristina Marie (Author) / Knudson, Kelly (Thesis director) / Stojanowski, Christopher (Committee member) / School of Criminology and Criminal Justice (Contributor) / School of Human Evolution & Social Change (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
161543-Thumbnail Image.png
Description
This dissertation examines the interrelationships between stress, frailty, growth, mortality, and diet at the Qinifab School site, Sudan, using a combination of osteological, paleopathological, and biogeochemical methods. The skeletal sample, from the fourth cataract region of Nubia, is comprised of 100 individuals from a Late Meroitic to Christian period (~250-1400

This dissertation examines the interrelationships between stress, frailty, growth, mortality, and diet at the Qinifab School site, Sudan, using a combination of osteological, paleopathological, and biogeochemical methods. The skeletal sample, from the fourth cataract region of Nubia, is comprised of 100 individuals from a Late Meroitic to Christian period (~250-1400 CE) cemetery. Standard osteological methods were used to estimate age and sex, and measurements were taken to assess body dimensions. Preadults were aged by dental and skeletal development, producing two independent ages to categorize individuals as developmentally “normal” or “delayed.” Data were collected on nonspecific indicators of stress, including linear enamel hypoplasias (LEHs), porotic hyperostosis (PH), and cribra orbitalia (CO). In preadults, these were compared to World Health Organization (WHO) growth standards to identify individuals who experienced stunting or wasting. For all ages, evidence of stress was compared with age at death and growth/body size. Finally, stable carbon and nitrogen isotope analyses were conducted on bone collagen and carbonate samples from a representative sample of 60 individuals, of which 46 collagen samples and all carbonates had acceptable preservation.“Delayed” preadults generally showed reduced body size relative to “normal” individuals, they were more likely to be stunted, and their growth trajectories were less similar to WHO standards. However, childhood stress had little impact on adult body size. CO occurred at higher frequencies in preadults and individuals with mixed/active lesions died at younger ages. PH rarely developed before age 6 but was present in most individuals over that age. Individuals with earlier formed LEHs tended to experience more stress overall and die younger. Active/mixed CO was associated with stunting in preadults and reduced brachial index in adults. A greater proportion of individuals in the Christian period were affected by CO compared to the Post-Meroitic. A temporal shift also occurred in diet between the Post-Meroitic and Christian periods based upon the δ13CCOLL and δ15NCOLL values. Lower δ15N and the greater difference in δ13CAP-COLL suggest a shift toward intensified agriculture and decreased use of animal products and a potential dietary etiology for the increase in CO.
ContributorsNorris, Annie Laurie (Author) / Baker, Brenda J (Thesis advisor) / Knudson, Kelly (Committee member) / Dupras, Tosha (Committee member) / Arizona State University (Publisher)
Created2021