Matching Items (6)
Filtering by

Clear all filters

131529-Thumbnail Image.png
Description
RecyclePlus is an iOS mobile application that allows users to be knowledgeable in the realms of sustainability. It gives encourages users to be environmental responsible by providing them access to recycling information. In particular, it allows users to search up certain materials and learn about its recyclability and how to

RecyclePlus is an iOS mobile application that allows users to be knowledgeable in the realms of sustainability. It gives encourages users to be environmental responsible by providing them access to recycling information. In particular, it allows users to search up certain materials and learn about its recyclability and how to properly dispose of the material. Some searches will show locations of facilities near users that collect certain materials and dispose of the materials properly. This is a full stack software project that explores open source software and APIs, UI/UX design, and iOS development.
ContributorsTran, Nikki (Author) / Ganesh, Tirupalavanam (Thesis director) / Meuth, Ryan (Committee member) / Watts College of Public Service & Community Solut (Contributor) / Department of Information Systems (Contributor) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
135380-Thumbnail Image.png
Description
Bioscience High School, a small magnet high school located in Downtown Phoenix and a STEAM (Science, Technology, Engineering, Arts, Math) focused school, has been pushing to establish a computer science curriculum for all of their students from freshman to senior year. The school's Mision (Mission and Vision) is to: "..provide

Bioscience High School, a small magnet high school located in Downtown Phoenix and a STEAM (Science, Technology, Engineering, Arts, Math) focused school, has been pushing to establish a computer science curriculum for all of their students from freshman to senior year. The school's Mision (Mission and Vision) is to: "..provide a rigorous, collaborative, and relevant academic program emphasizing an innovative, problem-based curriculum that develops literacy in the sciences, mathematics, and the arts, thus cultivating critical thinkers, creative problem-solvers, and compassionate citizens, who are able to thrive in our increasingly complex and technological communities." Computational thinking is an important part in developing a future problem solver Bioscience High School is looking to produce. Bioscience High School is unique in the fact that every student has a computer available for him or her to use. Therefore, it makes complete sense for the school to add computer science to their curriculum because one of the school's goals is to be able to utilize their resources to their full potential. However, the school's attempt at computer science integration falls short due to the lack of expertise amongst the math and science teachers. The lack of training and support has postponed the development of the program and they are desperately in need of someone with expertise in the field to help reboot the program. As a result, I've decided to create a course that is focused on teaching students the concepts of computational thinking and its application through Scratch and Arduino programming.
ContributorsLiu, Deming (Author) / Meuth, Ryan (Thesis director) / Nakamura, Mutsumi (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
137409-Thumbnail Image.png
Description
Electromyography (EMG) and Electroencephalography (EEG) are techniques used to detect electrical activity produced by the human body. EMG detects electrical activity in the skeletal muscles, while EEG detects electrical activity from the scalp. The purpose of this study is to capture different types of EMG and EEG signals and to

Electromyography (EMG) and Electroencephalography (EEG) are techniques used to detect electrical activity produced by the human body. EMG detects electrical activity in the skeletal muscles, while EEG detects electrical activity from the scalp. The purpose of this study is to capture different types of EMG and EEG signals and to determine if the signals can be distinguished between each other and processed into output signals to trigger events in prosthetics. Results from the study suggest that the PSD estimates can be used to compare signals that have significant differences such as the wrist, scalp, and fingers, but it cannot fully distinguish between signals that are closely related, such as two different fingers. The signals that were identified were able to be translated into the physical output simulated on the Arduino circuit.
ContributorsJanis, William Edward (Author) / LaBelle, Jeffrey (Thesis director) / Santello, Marco (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor)
Created2013-12
133291-Thumbnail Image.png
DescriptionFresh15 is an iOS application geared towards helping college students eat healthier. This is based on a user's preferences of price range, food restrictions, and favorite ingredients. Our application also considers the fact that students may have to order their ingredients online since they don't have access to transportation.
ContributorsBailey, Reece (Co-author) / Fallah-Adl, Sarah (Co-author) / Meuth, Ryan (Thesis director) / McDaniel, Troy (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
135528-Thumbnail Image.png
Description
Abstract
This work details the process of designing and implementing an embedded system
utilized to take measurements from a water cooler and post that data onto a publicly accessible web server. It embraces the Web 4.0, Internet of Things, mindset of making everyday appliances web accessible. The project was designed to satisfy

Abstract
This work details the process of designing and implementing an embedded system
utilized to take measurements from a water cooler and post that data onto a publicly accessible web server. It embraces the Web 4.0, Internet of Things, mindset of making everyday appliances web accessible. The project was designed to satisfy the needs of a local faculty member who wished to know the water levels available in his office water cooler, potentially saving him the disappointment of discovering an empty container. 


This project utilizes an Arduino microprocessor, an ESP 8266 Wi-Fi module, and a variety of sensors to detect water levels in filtered water unit located on the fourth floor of the the Brickyard Building, BYENG, at Arizona State University. This implementation will not interfere with the system already set in place to store and transfer water. The level of accuracy in water levels is expected to give the ability to discern +/- 1.5 liters of water. This system will send will send information to a created web service from which anyone with internet capabilities can gain access. The interface will display current water levels and attempt to predict at what time the water levels will be depleted. In the short term, this information will be useful for individuals on the floor to discern when they are able to extract water from the system. Overtime, the information this system gathers will map the drinking trends of the floor and can allow for a scheduling of water delivery that is more consistent with the demand of those working on the floor.
ContributorsEnriquez, Alexander (Author) / Meuth, Ryan (Thesis director) / Burger, Kevin (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
Description
In response to the lasting negative effects of the COVID-19 pandemic on driver’s education and road safety, this thesis is intended to create an iOS application that recognizes and reports on poor driving habits. The end user opens the application to start a trip, the application records GPS data and

In response to the lasting negative effects of the COVID-19 pandemic on driver’s education and road safety, this thesis is intended to create an iOS application that recognizes and reports on poor driving habits. The end user opens the application to start a trip, the application records GPS data and information from APIs containing environmental information in a consistent, synchronized manner, patterns in said data are analyzed by the application to flag events representing different issues when driving, and when the user presses a button to end the trip, a report of the events is presented. The project was developed using a complete design process, including a full Research and Development process and detailed design documentation. Separate components of the application were developed in an iterative structure, with GPS information, the data synchronization system, API parsing and recording, data analysis, and feedback all being designed and tested separately. The application ultimately reached late beta status, with target stability and test results being achieved in typical use cases.
ContributorsBronzi, John (Author) / Meuth, Ryan (Thesis director) / Yee, Richard (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor)
Created2022-12