Matching Items (15)
Filtering by

Clear all filters

131529-Thumbnail Image.png
Description
RecyclePlus is an iOS mobile application that allows users to be knowledgeable in the realms of sustainability. It gives encourages users to be environmental responsible by providing them access to recycling information. In particular, it allows users to search up certain materials and learn about its recyclability and how to

RecyclePlus is an iOS mobile application that allows users to be knowledgeable in the realms of sustainability. It gives encourages users to be environmental responsible by providing them access to recycling information. In particular, it allows users to search up certain materials and learn about its recyclability and how to properly dispose of the material. Some searches will show locations of facilities near users that collect certain materials and dispose of the materials properly. This is a full stack software project that explores open source software and APIs, UI/UX design, and iOS development.
ContributorsTran, Nikki (Author) / Ganesh, Tirupalavanam (Thesis director) / Meuth, Ryan (Committee member) / Watts College of Public Service & Community Solut (Contributor) / Department of Information Systems (Contributor) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
136804-Thumbnail Image.png
Description
The quality of user interface designs largely depends on the aptitude of the designer. The ability to generate mental abstract models and characterize a target user audience helps greatly when conceiving a design. The dry cleaning point-of-sale industry lacks quality user interface designs. These impaired interfaces were compared with textbook

The quality of user interface designs largely depends on the aptitude of the designer. The ability to generate mental abstract models and characterize a target user audience helps greatly when conceiving a design. The dry cleaning point-of-sale industry lacks quality user interface designs. These impaired interfaces were compared with textbook design techniques to discover how applicable published interface design concepts are in practice. Four variations of a software package were deployed to end users. Each variation contained different design techniques. Surveyed users responded positively to interface design practices that were consistent and easy to learn. This followed textbook expectations. Users however responded poorly to customization options, an important feature according to textbook material. The study made conservative changes to the four interface variations provided to end-users. A more liberal approach may have yielded additional results.
ContributorsSmith, Andrew David (Author) / Nakamura, Mutsumi (Thesis director) / Gottesman, Aaron (Committee member) / Barrett, The Honors College (Contributor) / Electrical Engineering Program (Contributor)
Created2014-05
136604-Thumbnail Image.png
Description
As technology's influence pushes every industry to change, healthcare professionals must move to a more connected model. The nearly ubiquitous presence of smartphones presents a unique opportunity for physicians to collect and process data from their patients more frequently. The Mayo Clinic, in partnership with the Barrett Honors College, has

As technology's influence pushes every industry to change, healthcare professionals must move to a more connected model. The nearly ubiquitous presence of smartphones presents a unique opportunity for physicians to collect and process data from their patients more frequently. The Mayo Clinic, in partnership with the Barrett Honors College, has designed and developed a prototype smartphone application targeting palliative care patients. The application collects symptom data from the patients and presents it to the doctors. This development project serves as a proof-of-concept for the application, and shows how such an application might look and function. Additionally, the project has revealed significant possibilities for the future of the application.
ContributorsGaney, David Howard (Author) / Balasooriya, Janaka (Thesis director) / Lipinski, Christopher (Committee member) / Barrett, The Honors College (Contributor) / Department of Psychology (Contributor) / Computer Science and Engineering Program (Contributor)
Created2015-05
136678-Thumbnail Image.png
Description
When planning a road trip today, there are solutions that let the user know what comes along their route, but the user is often presented with too much information, which can overwhelm the user. They are provided suggestions all along the route, not just at those times when they would

When planning a road trip today, there are solutions that let the user know what comes along their route, but the user is often presented with too much information, which can overwhelm the user. They are provided suggestions all along the route, not just at those times when they would be needed. RoutePlanner simply takes all that information and only presents that data to the user, that they would need at a particular time. Gas station suggestions would show when the gas tank range is going to be hit soon, and restaurant suggestions would only be shown around lunch time. The iOS app takes in the users origin and destination and provides the user the route as given by GoogleMaps, and then various stop suggestions at their given time. Each route that is obtained, is broken down into a number of steps, which are basically a connection of coordinate points. These coordinate point collections are used to point to a location at a certain distance or duration away from the origin. Given a coordinate, we query the APIs for places of interest and move to the next stop, until the end of the route.
ContributorsDamania, Harsh Abhay (Author) / Balasooriya, Janaka (Thesis director) / Faucon, Christophe (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor)
Created2014-12
136440-Thumbnail Image.png
Description
The face of computing is constantly changing. Wearable computers in the form of glasses or watches are becoming more and more common. These devices have very small screens (measured in millimeters), and users often interact with them through voice input and audio feedback. Weather is one of the most regularly

The face of computing is constantly changing. Wearable computers in the form of glasses or watches are becoming more and more common. These devices have very small screens (measured in millimeters), and users often interact with them through voice input and audio feedback. Weather is one of the most regularly checked app category on smart devices, but weather results on these devices are often limited to raw data, canned responses, or sentence templates with numbers plugged in. The goal for this project was to build a system that could generate weather forecast text, which could then be read to a user through text-to-speech. By using methods in language generation, the system can generate weather forecast text in millions of different ways. This is all computed locally, and it covers every possible weather case. In order to generate natural weather forecast texts, the system retrieved raw weather data from a weather API and created the text through six methods: content determination, document structuring, sentence aggregation, lexical choice, referring expression generation, and text realization. Content determination is the process of deciding on what information to include in a computer generated text. The document structuring phase deals with the order and structure of the information. Sentence aggregation is the merging of similar sentences to improve readability and to reduce redundancy. Lexical choice is the process of putting words to concepts. Referring expression generation is the process of identifying objects, regions, time periods, and locations within a text. Finally text realization involves creating sentences with proper syntax, morphology, and orthography. Through these six stages, a system was developed that could generate unique weather forecast text from raw data accurately and efficiently. It was built for iOS devices with Apple's new programming language, Swift, and it will be ported to the Apple Watch when the API is fully opened to developers.
ContributorsJorgensen, Jacob Paul (Author) / Baral, Chitta (Thesis director) / Faucon, Christophe (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor)
Created2015-05
137541-Thumbnail Image.png
Description
Over the course of computing history there have been many ways for humans to pass information to computers. These different input types, at first, tended to be used one or two at a time for the users interfacing with computers. As time has progressed towards the present, however, many devices

Over the course of computing history there have been many ways for humans to pass information to computers. These different input types, at first, tended to be used one or two at a time for the users interfacing with computers. As time has progressed towards the present, however, many devices are beginning to make use of multiple different input types, and will likely continue to do so. With this happening, users need to be able to interact with single applications through a variety of ways without having to change the design or suffer a loss of functionality. This is important because having only one user interface, UI, across all input types is makes it easier for the user to learn and keeps all interactions consistent across the application. Some of the main input types in use today are touch screens, mice, microphones, and keyboards; all seen in Figure 1 below. Current design methods tend to focus on how well the users are able to learn and use a computing system. It is good to focus on those aspects, but it is important to address the issues that come along with using different input types, or in this case, multiple input types. UI design for touch screens, mice, microphones, and keyboards each requires satisfying a different set of needs. Due to this trend in single devices being used in many different input configurations, a "fully functional" UI design will need to address the needs of multiple input configurations. In this work, clashing concerns are described for the primary input sources for computers and suggests methodologies and techniques for designing a single UI that is reasonable for all of the input configurations.
ContributorsJohnson, David Bradley (Author) / Calliss, Debra (Thesis director) / Wilkerson, Kelly (Committee member) / Walker, Erin (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor)
Created2013-05
132922-Thumbnail Image.png
Description
Charleston, South Carolina currently faces serious annual flooding issues due to tides and rainfall. These issues are expected to get significantly worse within the next few decades reaching a projected 180 days a year of flooding by 2045 (Carter et al., 2018). Several permanent solutions are in progress by the

Charleston, South Carolina currently faces serious annual flooding issues due to tides and rainfall. These issues are expected to get significantly worse within the next few decades reaching a projected 180 days a year of flooding by 2045 (Carter et al., 2018). Several permanent solutions are in progress by the City of Charleston. However, these solutions are years away at minimum and faced with development issues. This thesis attempts to treat some of the symptoms of flooding, such as navigation, by creating an iPhone application which predicts flooding and helps people navigate around it safely. Specifically, this thesis will take into account rainfall and tide levels to display to users actively flooded areas of downtown Charleston and provide routing to a destination from a user’s location around these flooded areas whenever possible.
ContributorsSalisbury, Mason (Author) / Balasooriya, Janaka (Thesis director) / Faucon, Christophe (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
133291-Thumbnail Image.png
DescriptionFresh15 is an iOS application geared towards helping college students eat healthier. This is based on a user's preferences of price range, food restrictions, and favorite ingredients. Our application also considers the fact that students may have to order their ingredients online since they don't have access to transportation.
ContributorsBailey, Reece (Co-author) / Fallah-Adl, Sarah (Co-author) / Meuth, Ryan (Thesis director) / McDaniel, Troy (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
148193-Thumbnail Image.png
Description

This project explores how modern mobile technology can be used to provide support for domestic violence victims. The goal of the project is to create a proof-of-concept iOS mobile application that maintains a discreet safety front and provides domestic violence victims with resources and safety planning. The design and implementation

This project explores how modern mobile technology can be used to provide support for domestic violence victims. The goal of the project is to create a proof-of-concept iOS mobile application that maintains a discreet safety front and provides domestic violence victims with resources and safety planning. The design and implementation are disguised as a hair salon app to maintain a low profile on the user’s phone. The HairHelp app features quick exit navigation, a secure database to store a user’s private and personal documents in case of emergency, and a checklist of safety planning measures. The steps taken in this project serve as the foundation for a larger project in the long term.

ContributorsShovkovy, Sophia (Author) / Balasooriya, Janaka (Thesis director) / Wilkey, Douglas (Committee member) / Computer Science and Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description
This project seeks to motivate runners by creating an application that selectively plays music based on smartwatch metrics. This is done by analyzing metrics collected through a person’s smartwatch such as heart rate or running power and then selecting the music that best fits their workout’s intensity. This way, as

This project seeks to motivate runners by creating an application that selectively plays music based on smartwatch metrics. This is done by analyzing metrics collected through a person’s smartwatch such as heart rate or running power and then selecting the music that best fits their workout’s intensity. This way, as the workout becomes harder for the user, increasingly motivating music is played.
ContributorsDoyle, Niklas (Author) / Osburn, Steven (Thesis director) / Miller, Phillip (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor) / School of Music, Dance and Theatre (Contributor)
Created2023-05