Matching Items (2)
Filtering by

Clear all filters

152439-Thumbnail Image.png
Description
As one of the most promising materials for high capacity electrode in next generation of lithium ion batteries, silicon has attracted a great deal of attention in recent years. Advanced characterization techniques and atomic simulations helped to depict that the lithiation/delithiation of silicon electrode involves processes including large volume change

As one of the most promising materials for high capacity electrode in next generation of lithium ion batteries, silicon has attracted a great deal of attention in recent years. Advanced characterization techniques and atomic simulations helped to depict that the lithiation/delithiation of silicon electrode involves processes including large volume change (anisotropic for the initial lithiation of crystal silicon), plastic flow or softening of material dependent on composition, electrochemically driven phase transformation between solid states, anisotropic or isotropic migration of atomic sharp interface, and mass diffusion of lithium atoms. Motivated by the promising prospect of the application and underlying interesting physics, mechanics coupled with multi-physics of silicon electrodes in lithium ion batteries is studied in this dissertation. For silicon electrodes with large size, diffusion controlled kinetics is assumed, and the coupled large deformation and mass transportation is studied. For crystal silicon with small size, interface controlled kinetics is assumed, and anisotropic interface reaction is studied, with a geometry design principle proposed. As a preliminary experimental validation, enhanced lithiation and fracture behavior of silicon pillars via atomic layer coatings and geometry design is studied, with results supporting the geometry design principle we proposed based on our simulations. Through the work documented here, a consistent description and understanding of the behavior of silicon electrode is given at continuum level and some insights for the future development of the silicon electrode are provided.
ContributorsAn, Yonghao (Author) / Jiang, Hanqing (Thesis advisor) / Chawla, Nikhilesh (Committee member) / Phelan, Patrick (Committee member) / Wang, Yinming (Committee member) / Yu, Hongyu (Committee member) / Arizona State University (Publisher)
Created2014
149524-Thumbnail Image.png
Description
Ordered buckling of stiff films on elastomeric substrates has many applications in the field of stretchable electronics. Mechanics plays a very important role in such systems. A full three dimensional finite element analysis studying the pattern of wrinkles formed on a stiff film bonded to a compliant substrate under the

Ordered buckling of stiff films on elastomeric substrates has many applications in the field of stretchable electronics. Mechanics plays a very important role in such systems. A full three dimensional finite element analysis studying the pattern of wrinkles formed on a stiff film bonded to a compliant substrate under the action of a compressive force has been widely studied. For thin films, this wrinkling pattern is usually sinusoidal, and for wide films the pattern depends on loading conditions. The present study establishes a relationship between the effect of the load applied at an angle to the stiff film. A systematic experimental and analytical study of these systems has been presented in the present study. The study is performed for two different loading conditions, one with the compressive force applied parallel to the film and the other with an angle included between the application of the force and the alignment of the stiff film. A geometric model closely resembling the experimental specimen studied is created and a three dimensional finite element analysis is carried out using ABAQUS (Version 6.7). The objective of the finite element simulations is to validate the results of the experimental study to be corresponding to the minimum total energy of the system. It also helps to establish a relation between the parameters of the buckling profile and the parameters (elastic and dimensional parameters) of the system. Two methods of non-linear analysis namely, the Newton-Raphson method and Arc-Length method are used. It is found that the Arc-Length method is the most cost effective in terms of total simulation time for large models (higher number of elements).The convergence of the results is affected by a variety of factors like the dimensional parameters of the substrate, mesh density of the model, length of the substrate and the film, the angle included. For narrow silicon films the buckling profile is observed to be sinusoidal and perpendicular to the direction of the silicon film. As the angle increases in wider stiff films the buckling profile is seen to transit from being perpendicular to the direction of the film to being perpendicular to the direction of the application of the pre-stress. This study improves and expands the application of the stiff film buckling to an angled loading condition.
ContributorsKondagari, Swathi Sri (Author) / Jiang, Hanqing (Thesis advisor) / Yu, Hongyu (Committee member) / Rajan, Subramaniam D. (Committee member) / Arizona State University (Publisher)
Created2010