Matching Items (10)
Filtering by

Clear all filters

Description
This thesis seeks to further explore off-design point operation of gas turbines and to examine the capabilities of GasTurb 12 as a tool for off-design analysis. It is a continuation of previous thesis work which initially explored the capabilities of GasTurb 12. The research is conducted in order to: 1)

This thesis seeks to further explore off-design point operation of gas turbines and to examine the capabilities of GasTurb 12 as a tool for off-design analysis. It is a continuation of previous thesis work which initially explored the capabilities of GasTurb 12. The research is conducted in order to: 1) validate GasTurb 12 and, 2) predict off-design performance of the Garrett GTCP85-98D located at the Arizona State University Tempe campus. GasTurb 12 is validated as an off-design point tool by using the program to predict performance of an LM2500+ marine gas turbine. Haglind and Elmegaard (2009) published a paper detailing a second off-design point method and it includes the manufacturer's off-design point data for the LM2500+. GasTurb 12 is used to predict off-design point performance of the LM2500+ and compared to the manufacturer's data. The GasTurb 12 predictions show good correlation. Garrett has published specification data for the GTCP85-98D. This specification data is analyzed to determine the design point and to comment on off-design trends. Arizona State University GTCP85-98D off-design experimental data is evaluated. Trends presented in the data are commented on and explained. The trends match the expected behavior demonstrated in the specification data for the same gas turbine system. It was originally intended that a model of the GTCP85-98D be constructed in GasTurb 12 and used to predict off-design performance. The prediction would be compared to collected experimental data. This is not possible because the free version of GasTurb 12 used in this research does not have a module to model a single spool turboshaft. This module needs to be purchased for this analysis.
ContributorsMartinjako, Jeremy (Author) / Trimble, Steve (Thesis advisor) / Dahm, Werner (Committee member) / Middleton, James (Committee member) / Arizona State University (Publisher)
Created2014
156632-Thumbnail Image.png
Description
Two methods of improving the life and efficiency of the Pulsed Inductive Thruster

(PIT) have been investigated. The first is a trade study of available switches to

determine the best device to implement in the PIT design. The second is the design

of a coil to improve coupling between the accelerator coil and

Two methods of improving the life and efficiency of the Pulsed Inductive Thruster

(PIT) have been investigated. The first is a trade study of available switches to

determine the best device to implement in the PIT design. The second is the design

of a coil to improve coupling between the accelerator coil and the plasma. Experiments

were done with both permanent and electromagnets to investigate the feasibility of

implementing a modified Halbach array within the PIT to promote better plasma

coupling and decrease the unused space within the thruster. This array proved to

promote more complete coupling on the edges of the coil where it had been weak in

previous studies. Numerical analysis was done to predict the performance of a PIT

that utilized each suggested switch type. This model utilized the Alfven velocity to

determine the critical mass and energy of these theoretical thrusters.
ContributorsRaines, Taylor (Author) / Takahashi, Timothy T (Thesis advisor) / White, Daniel B (Committee member) / Dahm, Werner (Committee member) / Arizona State University (Publisher)
Created2018
157140-Thumbnail Image.png
Description
In previous work, the effects of power extraction for onboard electrical equipment and flight control systems were studied to determine which turbine shaft (i.e. high power shaft vs low power shaft) is best suited for power extraction. This thesis will look into an alternative option, a three-spool design with a

In previous work, the effects of power extraction for onboard electrical equipment and flight control systems were studied to determine which turbine shaft (i.e. high power shaft vs low power shaft) is best suited for power extraction. This thesis will look into an alternative option, a three-spool design with a high-pressure turbine, low-pressure turbine, and a turbine dedicated to driving the fan. One of the three-spool turbines is designed to be a vaneless counter-rotating turbine. The off-design performance of this new design will be compared to the traditional two-spool design to determine if the additional spool is a practical alternative to current designs for high shaft horsepower extraction requirements. Upon analysis, this thesis has shown that a three-spool engine with a vaneless counter-rotating stage has worse performance characteristics than traditional two-spool designs for UAV systems.
ContributorsBurgett, Luke Michael (Author) / Takahashi, Timothy (Thesis advisor) / Dahm, Werner (Committee member) / Trimble, Steve (Committee member) / Arizona State University (Publisher)
Created2019
155783-Thumbnail Image.png
Description
The aerospike nozzle belongs to the class of altitude compensating nozzles making it a strong candidate for Space Shuttle Main Engines. Owing to their higher efficiency compared to conventional bell nozzles, the aerospike nozzles are being studied extensively and are being used for many Single State to Orbit (SSTO) designs.

The aerospike nozzle belongs to the class of altitude compensating nozzles making it a strong candidate for Space Shuttle Main Engines. Owing to their higher efficiency compared to conventional bell nozzles, the aerospike nozzles are being studied extensively and are being used for many Single State to Orbit (SSTO) designs. A rocket engine nozzle with altitude compensation, such as the aerospike, consumes less fuel than a rocket engine with a bell nozzle. Aerospike nozzles are huge and are often difficult to construct and have to be truncated in order to make them feasible for application in a rocket propulsion system. Consequently, truncation of the aerospike leads to pressure loss under the base, which in-turn decreases the overall thrust produced by the rocket nozzle. To overcome this loss, a technique called base bleed is implemented in which a secondary jet is made to flow through the base of the truncated portion. This thesis uses dynamic pressure contour plots to find out the ideal base bleed mass flow rate to avoid base recirculation in 10 %, 20 % and 30 % truncated aerospike nozzles.
ContributorsNagarajan, Venkatraman (Author) / White, Daniel B (Thesis advisor) / Dahm, Werner (Thesis advisor) / Huang, Huei-Ping (Committee member) / Arizona State University (Publisher)
Created2017
168672-Thumbnail Image.png
Description
This thesis describes the extension of an aircraft-style time-step integrating mission performance simulation to address aero-spaceplane design challenges. The result is a computationally lean program compatible with current Multi-Disciplinary Optimization schemes to assist in the conceptual design of hypersonic vehicles. To do this the starting aircraft style “Mission Code” required

This thesis describes the extension of an aircraft-style time-step integrating mission performance simulation to address aero-spaceplane design challenges. The result is a computationally lean program compatible with current Multi-Disciplinary Optimization schemes to assist in the conceptual design of hypersonic vehicles. To do this the starting aircraft style “Mission Code” required enhancements to the typical point-mass simulation for high altitude and high Mach flight. Stability parameters and the rigid-body modes of Short-Period and Dutch-Roll are tracked to understand time-domain limits to aerodynamic control, along with monitoring the Lateral Control Departure Parameter to ensure that the aircraft is not prone to spin. Additionally, experience has shown that for high Mach Number flight designers must consider aerothermodynamic effects early in the vehicle design process, and thus, an engineering level aerothermodynamic model is included. Comparisons to North American X-15 flight test datasets demonstrate the validity of this method in that application, and trade studies conducted show the utility of this application.
ContributorsGriffin, Jack Aidan (Author) / Takahashi, Timothy (Thesis advisor) / Dahm, Werner (Committee member) / Rodi, Patrick (Committee member) / Arizona State University (Publisher)
Created2022
187594-Thumbnail Image.png
Description
This thesis investigates the configurations needed to demonstrate positive lateraldirectional controllability across the flight envelope of a hypersonic vehicle. Itexamines the NASA Space Shuttle Orbiter as a baseline reference configuration, as it was a successful hypersonic vehicle. However, the Orbiter had limited high-speed maneuvering capability; it relied on reaction-control jets to augment

This thesis investigates the configurations needed to demonstrate positive lateraldirectional controllability across the flight envelope of a hypersonic vehicle. Itexamines the NASA Space Shuttle Orbiter as a baseline reference configuration, as it was a successful hypersonic vehicle. However, the Orbiter had limited high-speed maneuvering capability; it relied on reaction-control jets to augment controllability due to a strong tendency for its aerodynamics to “control couple.” It was seen that many problems associated with the control of the hypersonic Orbiter are due to its slender configuration. This work relies upon the Evolved-Bihrle-Weissman chart as an accurate indicator of lateral-directional stability and controllability. The also explores variant configurations of larger wing tip verticals to explore what configuration changes are needed to reduce dependence on reaction controls.
ContributorsHoopes, Connor Smith (Author) / Takahashi, Timothy (Thesis advisor) / Dahm, Werner (Committee member) / Perez, Ruben (Committee member) / Arizona State University (Publisher)
Created2023
191750-Thumbnail Image.png
Description
This thesis aims to determine how finite wing aerodynamic loads change in proximity to the ground. In this study, the primary design tool is an inviscid panel method code, VORLAX. The validation tool is a commercial volume grid CFD package, ANSYS FLUENT. I use VORLAX to simulate wings with different

This thesis aims to determine how finite wing aerodynamic loads change in proximity to the ground. In this study, the primary design tool is an inviscid panel method code, VORLAX. The validation tool is a commercial volume grid CFD package, ANSYS FLUENT. I use VORLAX to simulate wings with different incidences and aspect ratios to look at how ground effect impacts spanwise loading and incipient flow separation. Then the results were compared to widely published equations such as McCormick, Torenbeek, and Hoerner & Borst. Because I found that these “famous” equations function best only for specific conditions, I propose a new empirical equation to estimate ground effect lift as a function of aspect ratio and incidence. Using Stratford’s method to predict signs of flow separation in the inviscid solutions, I found that variations in the height above the ground were not significant enough to change the stall angle of low aspect ratio wings. I did find early signs of flow separation with increasing aspect ratio. I observe significant changes in spanwise loading when in ground effect; as I narrow the gap, the transverse loading builds higher near the center of the wing. These effects were more apparent in wings with smaller aspect ratio; higher aspect ratio wings experience a higher loading gradient near the tips in proximity to the ground. I found that high aspect ratio wings have a smaller stall angle compared to that of lower aspect ratio wings; these trends are consistent between the potential flow solution and the volume grid CFD viscous solution.
ContributorsValenzuela, Jose Vanir (Author) / Takahashi, Timothy (Thesis advisor) / Dahm, Werner (Committee member) / Huang, Huei-Ping (Committee member) / Arizona State University (Publisher)
Created2024
157724-Thumbnail Image.png
Description
Micro/meso combustion has several advantages over regular combustion in terms of scale, efficiency, enhanced heat and mass transfer, quick startup and shutdown, fuel utilization and carbon footprint. This study aims to analyze the effect of temperature on critical sooting equivalence ratio and precursor formation in a micro-flow reactor. The effect

Micro/meso combustion has several advantages over regular combustion in terms of scale, efficiency, enhanced heat and mass transfer, quick startup and shutdown, fuel utilization and carbon footprint. This study aims to analyze the effect of temperature on critical sooting equivalence ratio and precursor formation in a micro-flow reactor. The effect of temperature on the critical sooting equivalence ratio of propane/air mixture at atmospheric pressure with temperatures ranging from 750-1250°C was investigated using a micro-flow reactor with a controlled temperature profile of diameter 2.3mm, equivalence ratios of 1-13 and inlet flow rates of 10 and 100sccm. The effect of inert gas dilution was studied by adding 90sccm of nitrogen to 10sccm of propane/air to make a total flow rate of 100sccm. The gas species were collected at the end of the reactor using a gas chromatograph for further analysis. Soot was indicated by visually examining the reactor before and after combustion for traces of soot particles on the inside of the reactor. At 1000-1250°C carbon deposition/soot formation was observed inside the reactor at critical sooting equivalence ratios. At 750-950°C, no soot formation was observed despite operating at much higher equivalence ratio, i.e., up to 100. Adding nitrogen resulted in an increase in the critical sooting equivalence ratio.

The wall temperature profiles were obtained with the help of a K-type thermocouple, to get an idea of the difference between the wall temperature provided with the resistive heater and the wall temperature with combustion inside the reactor. The temperature profiles were very similar in the case of 10sccm but markedly different in the other two cases for all the temperatures.

These results indicate a trend that is not well-known or understood for sooting flames, i.e., decreasing temperature decreases soot formation. The reactor capability to examine the effect of temperature on the critical sooting equivalence ratio at different flow rates was successfully demonstrated.
ContributorsKhalid, Abdul Hannan Hannan (Author) / Milcarek, Ryan (Thesis advisor) / Dahm, Werner (Committee member) / Kim, Jeonglae (Committee member) / Arizona State University (Publisher)
Created2019
190699-Thumbnail Image.png
Description
This thesis addresses the issue of assessing longitudinal and lateral-directional trim capability during the conceptual design process. Modern high-performance aircraft are likely to feature complex flight control systems where the control system may independently command every control surface to develop necessary moments. However, to prove stability and controllability on such

This thesis addresses the issue of assessing longitudinal and lateral-directional trim capability during the conceptual design process. Modern high-performance aircraft are likely to feature complex flight control systems where the control system may independently command every control surface to develop necessary moments. However, to prove stability and controllability on such an aircraft requires a near-final set of control laws. This requirement is onerous at the conceptual design level, where engineering methods need to facilitate rapid, multidisciplinary design optimization trades. This work considers the differences in Attainable Moment Sets across a wide variety of airframes using a simplified “pre-mix” approach to controls as well as a model where the control systems have independent command authority over each control surface. This work indicates that the “independent-single-panel” model offers modest improvements in attainable moments over a “pre-mix” strategy. This suggests that a “pre-mix” approach used to assess basic combined trim problems will not lead to an overly conservative final design.
ContributorsHeinz, Joshua Holden (Author) / Takahashi, Timothy (Thesis advisor) / Dahm, Werner (Committee member) / Cotting, M. Christopher (Committee member) / Arizona State University (Publisher)
Created2023
Description
The objective of this study is to understand how to integrate conical spike external compression inlets with high bypass turbofan engines for application on future supersonic airliners. Many performance problems arise when inlets are matched with engines as inlets come with a plethora of limitations and losses that greatly affect

The objective of this study is to understand how to integrate conical spike external compression inlets with high bypass turbofan engines for application on future supersonic airliners. Many performance problems arise when inlets are matched with engines as inlets come with a plethora of limitations and losses that greatly affect an engine’s ability to operate. These limitations and losses include drag due to inlet spillage, bleed ducts, and bypass doors, as well as the maximum and minimum values of mass flow ratio at each Mach number that define when an engine can no longer function. A collection of tools was developed that allow one to calculate the raw propulsion data of an engine, match the propulsion data with an inlet, calculate the aerodynamic data of an aircraft, and combine the propulsion and aerodynamic data to calculate the installed performance of the entire propulsion system. Several trade studies were performed that tested how changing specific design parameters of the engine affected propulsion performance. These engine trade studies proved that high bypass turbofan engines could be developed with external compression inlets and retain effective supersonic performance. Several engines of efficient fuel consumption and differing bypass ratios were developed through the engine trade studies and used with the aerodynamic data of the Concorde to test the aircraft performance of a supersonic airliner using these engines. It was found that none of the engines that were tested came close to matching the supersonic performance that the Concorde could achieve with its own turbojet engines. It is possible to speculate from the results several different reasons why these turbofan engines were unable to function effectively with the Concorde. These speculations show that more tests and trade studies need to be performed in order to determine if high bypass turbofan engines can be developed for effective usage with supersonic airliners in any possible way.
ContributorsCleary, Spencer (Author) / Takahashi, Timothy (Thesis advisor) / White, Daniel (Committee member) / Dahm, Werner (Committee member) / Arizona State University (Publisher)
Created2018