Matching Items (3)
Filtering by

Clear all filters

150726-Thumbnail Image.png
Description
The heat and mass transfer phenomena in micro-scale for the mass transfer phenomena on drug in cylindrical matrix system, the simulation of oxygen/drug diffusion in a three dimensional capillary network, and a reduced chemical kinetic modeling of gas turbine combustion for Jet propellant-10 have been studied numerically. For the numerical

The heat and mass transfer phenomena in micro-scale for the mass transfer phenomena on drug in cylindrical matrix system, the simulation of oxygen/drug diffusion in a three dimensional capillary network, and a reduced chemical kinetic modeling of gas turbine combustion for Jet propellant-10 have been studied numerically. For the numerical analysis of the mass transfer phenomena on drug in cylindrical matrix system, the governing equations are derived from the cylindrical matrix systems, Krogh cylinder model, which modeling system is comprised of a capillary to a surrounding cylinder tissue along with the arterial distance to veins. ADI (Alternative Direction Implicit) scheme and Thomas algorithm are applied to solve the nonlinear partial differential equations (PDEs). This study shows that the important factors which have an effect on the drug penetration depth to the tissue are the mass diffusivity and the consumption of relevant species during the time allowed for diffusion to the brain tissue. Also, a computational fluid dynamics (CFD) model has been developed to simulate the blood flow and oxygen/drug diffusion in a three dimensional capillary network, which are satisfied in the physiological range of a typical capillary. A three dimensional geometry has been constructed to replicate the one studied by Secomb et al. (2000), and the computational framework features a non-Newtonian viscosity model for blood, the oxygen transport model including in oxygen-hemoglobin dissociation and wall flux due to tissue absorption, as well as an ability to study the diffusion of drugs and other materials in the capillary streams. Finally, a chemical kinetic mechanism of JP-10 has been compiled and validated for a wide range of combustion regimes, covering pressures of 1atm to 40atm with temperature ranges of 1,200 K - 1,700 K, which is being studied as a possible Jet propellant for the Pulse Detonation Engine (PDE) and other high-speed flight applications such as hypersonic missiles. The comprehensive skeletal mechanism consists of 58 species and 315 reactions including in CPD, Benzene formation process by the theory for polycyclic aromatic hydrocarbons (PAH) and soot formation process on the constant volume combustor, premixed flame characteristics.
ContributorsBae, Kang-Sik (Author) / Lee, Taewoo (Thesis advisor) / Huang, Huei-Ping (Committee member) / Calhoun, Ronald (Committee member) / Phelan, Patrick (Committee member) / Lopez, Juan (Committee member) / Arizona State University (Publisher)
Created2012
157462-Thumbnail Image.png
Description
The advancements in additive manufacturing have made it possible to bring life to designs

that would otherwise exist only on paper. An excellent example of such designs

are the Triply Periodic Minimal Surface (TPMS) structures like Schwarz D, Schwarz

P, Gyroid, etc. These structures are self-sustaining, i.e. they require minimal supports

or no supports

The advancements in additive manufacturing have made it possible to bring life to designs

that would otherwise exist only on paper. An excellent example of such designs

are the Triply Periodic Minimal Surface (TPMS) structures like Schwarz D, Schwarz

P, Gyroid, etc. These structures are self-sustaining, i.e. they require minimal supports

or no supports at all when 3D printed. These structures exist in stable form in

nature, like butterfly wings are made of Gyroids. Automotive and aerospace industry

have a growing demand for strong and light structures, which can be solved using

TPMS models. In this research we will try and understand some of the properties of

these Triply Periodic Minimal Surface (TPMS) structures and see how they perform

in comparison to the conventional models. The research was concentrated on the

mechanical, thermal and fluid flow properties of the Schwarz D, Gyroid and Spherical

Gyroid Triply Periodic Minimal Surface (TPMS) models in particular, other Triply

Periodic Minimal Surface (TPMS) models were not considered. A detailed finite

element analysis was performed on the mechanical and thermal properties using ANSYS

19.2 and the flow properties were analyzed using ANSYS Fluent under different

conditions.
ContributorsRaja, Faisal (Author) / Phelan, Patrick (Thesis advisor) / Bhate, Dhruv (Committee member) / Rykaczewski, Konrad (Committee member) / Arizona State University (Publisher)
Created2019
168691-Thumbnail Image.png
Description
Rooftop photovoltaic (PV) systems are becoming increasingly common as the efficiency of solar panels increase, the cost decreases, and worries about climate change increase and become increasingly prevalent. An under explored aspect of rooftop solar systems is the thermal effects that the systems have on the local area. These effects

Rooftop photovoltaic (PV) systems are becoming increasingly common as the efficiency of solar panels increase, the cost decreases, and worries about climate change increase and become increasingly prevalent. An under explored aspect of rooftop solar systems is the thermal effects that the systems have on the local area. These effects are investigated in this paper to determine the overall impact that solar systems have on the heating and cooling demands of a building as well as on the efficiency losses of the solar panels due to the increased temperature on the panels themselves. The specific building studied in this paper is the Goldwater Center for Science and Engineering located in the Tempe campus of Arizona State University. The ambient conditions were modeled from a typical July day in Tempe. A numerical model of a simple flat roof was also created to find the average rooftop temperature throughout the day. Through this study it was determined that solar panels cause a decrease in the maximum temperature of the rooftop during the day, while reducing the ability of the roof to be cooled during the night. The solar panels also saw a high temperature during the day during the most productive time of day for solar panels, which saw a decrease in total energy production for the panels.
ContributorsNaber, Nicholas (Author) / Huang, Huei-Ping (Thesis advisor) / Phelan, Patrick (Committee member) / Bocanegra, Luis (Committee member) / Arizona State University (Publisher)
Created2022