Matching Items (105)
Filtering by

Clear all filters

161518-Thumbnail Image.png
Description
The Vortex-lattice method has been utilized throughout history to both design and analyze the aerodynamic performance characteristics of flight vehicles. There are numerous different programs utilizing this method, each of which has its own set of assumptions and performance limitations. This thesis highlights VORLAX, one such solver, and details its

The Vortex-lattice method has been utilized throughout history to both design and analyze the aerodynamic performance characteristics of flight vehicles. There are numerous different programs utilizing this method, each of which has its own set of assumptions and performance limitations. This thesis highlights VORLAX, one such solver, and details its historic and modernized performance characteristics through a series of code improvements and optimizations. With VORLAX, rapid synthesis and verification of aircraft performance data related to wing pressure distributions, stability and control, and Federal Regulation compliance can be quickly and accurately obtained. As such, VORLAX represents a class of efficient yet largely forgotten computational techniques that allow users to explore numerous design solutions in a fraction of the time that would be needed to use more complex, full-fledged engineering tools. In the age of modern computers, one hypothesis is that VORLAX and similar “lean” computational fluid dynamics (CFD) solvers have preferential performance characteristics relative to expensive, volume grid CFD suites, such as ANSYS Fluent. By utilizing these types of programs, tasks such as pre- and post-processing become trivially simple with basic scripting languages such as Visual Basic for Applications or Python. Thus, lean engineering programs and methodologies deserve their place in modern engineering, despite their wrongfully decreasing prevalence.
ContributorsSouders, Tyler Jeffery (Author) / Takahashi, Timothy T. (Thesis advisor) / Herrmann, Marcus (Thesis advisor) / Dahm, Werner J.A. (Committee member) / Arizona State University (Publisher)
Created2021
161412-Thumbnail Image.png
Description
The objective of this study is to estimate the variation of flight performance of a variable sweep wing geometry on the reverse engineered Boeing 2707-100 SST, when compared against the traditional delta wing approach used on supersonic airliner. The reason for this lies beneath the fact that supersonic orientations of

The objective of this study is to estimate the variation of flight performance of a variable sweep wing geometry on the reverse engineered Boeing 2707-100 SST, when compared against the traditional delta wing approach used on supersonic airliner. The reason for this lies beneath the fact that supersonic orientations of wings doesn’t seem to work well for subsonic conditions, and subsonic wings are inefficient for supersonic flight. This would likely mean that flying long haul subsonic with supersonic wing geometry is inefficient compared to regular aircraft, but more importantly requires high takeoff/landing speeds and even long runways to bring the aircraft to hold. One might be able to get around this problem - partially - by adding thrust either by using afterburners, or by using variable geometry wings. To assess the flight performance, the research work done in this report focuses on implementing the latter solution to the abovementioned problem by using the aerodynamic performance parameters such as Coefficient of Lift, Coefficient of Drag along with its components specific to every test Mach number and altitude, along with the propulsion performance parameters such as thrust and thrust specific fuel consumption at different iterations of power settings of engine, flight Mach number and altitude in a propulsion database file to estimate flight performance using flight missions and energy-maneuverability theory approach. The flight performance was studied at several sweep angles of the aircraft to estimate the best possible sweep orientation based on the requirement of mission and an optimal flight mission was developed for an aircraft with swing wing capabilities.
ContributorsChaudhari, Bhargav Naginbhai (Author) / Takahashi, Timothy T (Thesis advisor) / Dahm, Werner J (Committee member) / Kim, Jeonglae (Committee member) / Arizona State University (Publisher)
Created2021
161858-Thumbnail Image.png
Description
Regolith excavation systems are the enabling technology that must be developed in order to implement many of the plans for in-situ resource utilization (ISRU) that have been developed in recent years to aid in creating a lasting human presence on the surface of the Moon, Mars, and other celestial bodies.

Regolith excavation systems are the enabling technology that must be developed in order to implement many of the plans for in-situ resource utilization (ISRU) that have been developed in recent years to aid in creating a lasting human presence on the surface of the Moon, Mars, and other celestial bodies. The majority of proposed ISRU excavation systems are integrated onto a wheeled mobility system, however none yet have proposed the use of a screw-propelled vehicle, which has the potential to augment and enhance the capabilities of the excavation system. As a result, CASPER, a novel screw-propelled excavation rover is developed and analyzed to determine its effectiveness as a ISRU excavation system. The excavation rate, power, velocity, cost of transport, and a new parameter, excavation transport rate, are analyzed for various configurations of the vehicle through mobility and excavation tests performed in silica sand. The optimal configuration yielded a 28.4 kg/hr excavation rate and11.2 m/min traverse rate with an overall system mass of 3.4 kg and power draw of26.3 W. CASPER’s mobility and excavation performance results are compared to four notable proposed ISRU excavation systems of various types. The results indicate that this architecture shows promise as an ISRU excavator because it provides significant excavation capability with low mass and power requirements.
ContributorsGreen, Marko (Author) / Marvi, Hamid (Thesis advisor) / Emady, Heather (Committee member) / Lee, Hyunglae (Committee member) / Arizona State University (Publisher)
Created2021
161914-Thumbnail Image.png
Description
Automation has become a staple in high volume manufacturing, where the consistency and quality of a product carries as much importance as the quantity produced. The Aerospace Industry has a vested interest in expanding the application of automation beyond simply manufacturing. In this project, the process of systems engineering has

Automation has become a staple in high volume manufacturing, where the consistency and quality of a product carries as much importance as the quantity produced. The Aerospace Industry has a vested interest in expanding the application of automation beyond simply manufacturing. In this project, the process of systems engineering has been applied to the Conceptual Design Phase of product development; specifically, the Preliminary Structural Design of a Composite wing for an Unmanned Air Vehicle (UAV). Automated structural analysis can be used to develop a composite wing structure that can be directly rendered in Computer Aided Drafting (CAD) and validated using Finite Element Analysis (FEA). This concept provides the user with the ability to quickly iterate designs and demonstrates how different the “optimal light weight” composite structure must look for UAV systems of varied weight, range, and flight maneuverability.
ContributorsBlair, Martin Caceres (Author) / Takahashi, Timothy (Thesis advisor) / Murthy, Raghavendra (Committee member) / Perez, Ruben (Committee member) / Arizona State University (Publisher)
Created2021
161464-Thumbnail Image.png
Description
The Transonic Area Rule, developed by Richard T. Whitcomb in the early 1950s, revolutionized high-speed flight because its insight allowed engineers to reduce and/or delay the transonic drag rise. To this day, it is the rationale behind “coke-bottle” sculpturing (indenting the aircraft fuselage at the wing-fuselage junction) to alter the

The Transonic Area Rule, developed by Richard T. Whitcomb in the early 1950s, revolutionized high-speed flight because its insight allowed engineers to reduce and/or delay the transonic drag rise. To this day, it is the rationale behind “coke-bottle” sculpturing (indenting the aircraft fuselage at the wing-fuselage junction) to alter the cross-sectional area development of the body. According to Whitcomb, this indentation is meant to create a smoother transition of cross-sectional area development of the body and consequently would reduce the number of shocks on the body, their intensity, and their shock pattern complexity. Along with this, modeling of a geometry’s transonic drag rise could be simplified by creating a comparable body of revolution with the same cross-sectional area development as the original geometry. Thus, the Transonic Area Rule has been advertised as an aerodynamic multitool. This new work probes the underlying mechanics of the Transonic Area Rule and determines just how accurate it is in producing its advertised results. To accomplish this, several different wave-drag approximation methods were used to replicate and compare the results presented in Whitcomb’s famous 1952 report16. These methods include EDET (Empirical Drag Estimation Technique)4, D2500 (Harris Wave Drag program)6, and CFD (Computational Fluid Dynamics) analysis through SU25. Overall drag increment data was collected for comparison with Whitcomb’s data. More in-depth analysis was then done on the flow conditions around the geometries using CFD solution plots. After analysis of the collected data was performed, it was discovered that this data argued against Whitcomb’s comparable body of revolution claim as no cases were demonstrated where the comparable body and original body yielded similar drag rise characteristics. Along with this, shock structures and patterns were not simplified in two of the three cases observed and were instead complicated even further. The only exception to this observation was the swept wing, cylindrical body in which all shocks were virtually eliminated at all observed Mach numbers. For the reduced transonic drag rise claim, the data argued in favor of this as the drag rise was indeed reduced for the three observed geometries, but only for a limited Mach number range.
ContributorsArmenta, Francisco Xavier (Author) / Takahashi, Timothy T (Thesis advisor) / Kim, Jeonglae (Committee member) / Rodi, Patrick (Committee member) / Arizona State University (Publisher)
Created2021
161618-Thumbnail Image.png
Description
Modern transonic aircraft have been designed and refined over the ages to achieve better and better performance. Aerodynamic refinements typically optimize a number of performance parameters: lift-to-drag ratio (L/D), zero-lift drag coefficient, Cp distribution, design Critical Mach number and design lift coefficient. This thesis explores the effects of aerodynamic refinements

Modern transonic aircraft have been designed and refined over the ages to achieve better and better performance. Aerodynamic refinements typically optimize a number of performance parameters: lift-to-drag ratio (L/D), zero-lift drag coefficient, Cp distribution, design Critical Mach number and design lift coefficient. This thesis explores the effects of aerodynamic refinements to a baseline thin transonic wing, namely, modifications to the leading-edge radius, camber, droop and thickness to determine their effectiveness to optimize the aerodynamic performance of the wing. Prior work has shown that these modifications can be helpful to improve the performance of a wing. In this new work, panel methods and computational fluid dynamics (CFD) have been used to show that these modifications do not necessarily help in improving the aerodynamic performance. This work also presents data to show the appropriate use of Küchemann’s critical pressure coefficient equation in a 3-D flow field over a thin transonic wing integrated to a nominal fuselage. The final work of the thesis aims to provide clear definitions of the terms involved in the classical Küchemann’s equation and how the design modifications depend on the correct interpretation of the Küchemann’s equation. It also studies effect of winglet on design performance and throws some light on the inconsistency in the simple sweep theory.
ContributorsPlaban, Punya (Author) / Takahashi, Timothy TT (Thesis advisor) / Herrmann, Marcus MH (Committee member) / Perez, Ruben RP (Committee member) / Arizona State University (Publisher)
Created2021
161596-Thumbnail Image.png
Description
Additively Manufactured Thin-wall Inconel 718 specimens commonly find application in heat exchangers and Thermal Protection Systems (TPS) for space vehicles. The wall thicknesses in applications for these components typically range between 0.03-2.5mm. Laser Powder Bed Fusion (PBF) Fatigue standards assume thickness over 5mm and consider Hot Isostatic Pressing

Additively Manufactured Thin-wall Inconel 718 specimens commonly find application in heat exchangers and Thermal Protection Systems (TPS) for space vehicles. The wall thicknesses in applications for these components typically range between 0.03-2.5mm. Laser Powder Bed Fusion (PBF) Fatigue standards assume thickness over 5mm and consider Hot Isostatic Pressing (HIP) as conventional heat treatment. This study aims at investigating the dependence of High Cycle Fatigue (HCF) behavior on wall thickness and Hot Isostatic Pressing (HIP) for as-built Additively Manufactured Thin Wall Inconel 718 alloys. To address this aim, high cycle fatigue tests were performed on specimens of seven different thicknesses (0.3mm,0.35mm, 0.5mm, 0.75mm, 1mm, 1.5mm, and 2mm) using a Servohydraulic FatigueTesting Machine. Only half of the specimen underwent HIP, creating data for bothHIP and No-HIP specimens. Upon analyzing the collected data, it was noticed that the specimens that underwent HIP had similar fatigue behavior to that of sheet metal specimens. In addition, it was also noticed that the presence of Porosity in No-HIP specimens makes them more sensitive to changes in stress. A clear decrease in fatigue strength with the decrease in thickness was observed for all specimens.
ContributorsSaxena, Anushree (Author) / Bhate, Dhruv (Thesis advisor) / Liu, Yongming (Committee member) / Kwon, Beomjin (Committee member) / Arizona State University (Publisher)
Created2021
168774-Thumbnail Image.png
Description
Modern aircraft propulsion systems such as the ultra high bypass ratio turbofan impose constraints on engine installation below the wing, causing jet–wing interactions. Similar interactions are encountered when a jet-powered aircraft takes off on airport runway or aircraft carrier deck. High-speed jet flow near a solid surface shows markedly different

Modern aircraft propulsion systems such as the ultra high bypass ratio turbofan impose constraints on engine installation below the wing, causing jet–wing interactions. Similar interactions are encountered when a jet-powered aircraft takes off on airport runway or aircraft carrier deck. High-speed jet flow near a solid surface shows markedly different turbulence characteristics compared with free jet, including attached turbulent jet and development of non-equilibrium boundary layer down- stream. Wall pressure fluctuations tend to be more unsteady and stronger, leading to increased vibration affecting aircraft cabin noise and modified jet noise radiation. Large-eddy simulation (LES) is useful to characterize turbulent jet flows over a solid surface as well as wall pressure distribution to promote physical understanding and modeling studies. In this study, LES is performed for an installed setup of a Mach 0.7 turbulent jet where the jet–plate distance is fixed at 2D where D is the nozzle-exit diameter. Unstructured-grid LES is used to validate the corresponding experiment (from literature). In addition, a high-fidelity numerical database is built for further analysis and modeling. Turbulence statistics and energy spectra show that agreement with the experimental measurement for the installed case is encouraging, paving a way for future analysis and modeling.
ContributorsTamhane, Nikhil (Author) / Kim, Jeongale (Thesis advisor) / Peet, Yulia (Thesis advisor) / Jeun, Jinah (Committee member) / Arizona State University (Publisher)
Created2022
168784-Thumbnail Image.png
Description
Nanostructured (NS, grain size (d) <100nm) and ultrafine grained (UFG, d<500nm) metals possess superior mechanical and electrical properties over coarse grained (CG, d≫1μm) metals. The strength of metals like copper (Cu) has been shown to be significantly improved when engineered to have fine and ultrafine grain sizes via processes such

Nanostructured (NS, grain size (d) <100nm) and ultrafine grained (UFG, d<500nm) metals possess superior mechanical and electrical properties over coarse grained (CG, d≫1μm) metals. The strength of metals like copper (Cu) has been shown to be significantly improved when engineered to have fine and ultrafine grain sizes via processes such as cryomilling, Cold Isostatic Pressing (CIP) and Continuous Equal Channel Angular Pressing (C-ECAP). This study investigates the mechanical and electrical properties of laboratory scale copper (Cu) conductors manufactured through several steps including cryomilling followed by cold isostatic pressing and finally C-ECAP and how its strength is affected by a variety of parameters when tested in uniaxial tension. The copper material is fabricated through cryomilling, cold isostatic pressing and (C-ECAP). Mechanical characterization is conducted using uniaxial tensile tests, nanoindentation and hardness tests. Pre and Post fabrication examination of the material with 3D-xray tomography, optical and electron microscope were conducted to gain deeper understanding of the effects of the processing parameters on the material during fabrication and the evolution of the microstructure as the powders go through the manufacturing process. Electrical testing is conducted to evaluate the electrical conductivity of the manufactured copper. While the material showed improved strength and hardness compared to conventional copper material at room temperature, its ductility decreased. Also, higher ECAP temperatures produced materials with higher electrical and mechanical properties.
ContributorsOpoku, Jackson Abankwa (Author) / Ladani, Leila LJL (Thesis advisor) / Razmi, Jafar JR (Committee member) / Li, Xiangjia XL (Committee member) / Arizona State University (Publisher)
Created2022
168813-Thumbnail Image.png
Description
Recent studies found that culture as part of the socio-cultural lens of human factors has a significant role in aviation safety, not limited to aircraft accident causation. This research aims to employ the Global Leadership and Organizational Behaviour Effectiveness (GLOBE) model to examine the effect of cultural influence on aviation

Recent studies found that culture as part of the socio-cultural lens of human factors has a significant role in aviation safety, not limited to aircraft accident causation. This research aims to employ the Global Leadership and Organizational Behaviour Effectiveness (GLOBE) model to examine the effect of cultural influence on aviation accident causation analysis, in accordance with the Human Factors Analysis and Classification System (HFACS), with a focus on cases of Indonesian aviation accidents and US aviation accidents. This qualitative research effort evaluated six cases of Indonesian aviation accidents and six cases of US aviation accidents in the period between 2002 through 2022. The analysis used the preliminary HFACS results developed by the author and further analyzed using semi-structured interviews with six Indonesian aviation experts and four US experts to examine the existence of cultural influence on the accidents. Thematic content analysis was utilized to analyze cultural influence on aircraft accident causation cases based on participants’ narration. The result covered the effect of the cultural differences between Indonesia and the US, including the characteristics of power distance, in-group collectivism, and performance orientation on HFACS analysis, which could logically lead to a more comprehensive analysis of issues at the level of unsafe supervision and organizational influences, and could result in a recommendation regarding future enhancement to the HFACS model.
ContributorsPutri, Fiodesy Gemilang (Author) / Cirillo, Michael (Thesis advisor) / Faith, Edward (Committee member) / Pearson, Michael (Committee member) / Arizona State University (Publisher)
Created2022