Matching Items (8)
Filtering by

Clear all filters

152249-Thumbnail Image.png
Description
For CFD validation, hypersonic flow fields are simulated and compared with experimental data specifically designed to recreate conditions found by hypersonic vehicles. Simulated flow fields on a cone-ogive with flare at Mach 7.2 are compared with experimental data from NASA Ames Research Center 3.5" hypersonic wind tunnel. A parametric study

For CFD validation, hypersonic flow fields are simulated and compared with experimental data specifically designed to recreate conditions found by hypersonic vehicles. Simulated flow fields on a cone-ogive with flare at Mach 7.2 are compared with experimental data from NASA Ames Research Center 3.5" hypersonic wind tunnel. A parametric study of turbulence models is presented and concludes that the k-kl-omega transition and SST transition turbulence model have the best correlation. Downstream of the flare's shockwave, good correlation is found for all boundary layer profiles, with some slight discrepancies of the static temperature near the surface. Simulated flow fields on a blunt cone with flare above Mach 10 are compared with experimental data from CUBRC LENS hypervelocity shock tunnel. Lack of vibrational non-equilibrium calculations causes discrepancies in heat flux near the leading edge. Temperature profiles, where non-equilibrium effects are dominant, are compared with the dissociation of molecules to show the effects of dissociation on static temperature. Following the validation studies is a parametric analysis of a hypersonic inlet from Mach 6 to 20. Compressor performance is investigated for numerous cowl leading edge locations up to speeds of Mach 10. The variable cowl study showed positive trends in compressor performance parameters for a range of Mach numbers that arise from maximizing the intake of compressed flow. An interesting phenomenon due to the change in shock wave formation for different Mach numbers developed inside the cowl that had a negative influence on the total pressure recovery. Investigation of the hypersonic inlet at different altitudes is performed to study the effects of Reynolds number, and consequently, turbulent viscous effects on compressor performance. Turbulent boundary layer separation was noted as the cause for a change in compressor performance parameters due to a change in Reynolds number. This effect would not be noticeable if laminar flow was assumed. Mach numbers up to 20 are investigated to study the effects of vibrational and chemical non-equilibrium on compressor performance. A direct impact on the trends on the kinetic energy efficiency and compressor efficiency was found due to dissociation.
ContributorsOliden, Daniel (Author) / Lee, Tae-Woo (Thesis advisor) / Peet, Yulia (Committee member) / Huang, Huei-Ping (Committee member) / Arizona State University (Publisher)
Created2013
153123-Thumbnail Image.png
Description
Stereolithography files (STL) are widely used in diverse fields as a means of describing complex geometries through surface triangulations. The resulting stereolithography output is a result of either experimental measurements, or computer-aided design. Often times stereolithography outputs from experimental means are prone to noise, surface irregularities and holes in an

Stereolithography files (STL) are widely used in diverse fields as a means of describing complex geometries through surface triangulations. The resulting stereolithography output is a result of either experimental measurements, or computer-aided design. Often times stereolithography outputs from experimental means are prone to noise, surface irregularities and holes in an otherwise closed surface.

A general method for denoising and adaptively smoothing these dirty stereolithography files is proposed. Unlike existing means, this approach aims to smoothen the dirty surface representation by utilizing the well established levelset method. The level of smoothing and denoising can be set depending on a per-requirement basis by means of input parameters. Once the surface representation is smoothened as desired, it can be extracted as a standard levelset scalar isosurface.

The approach presented in this thesis is also coupled to a fully unstructured Cartesian mesh generation library with built-in localized adaptive mesh refinement (AMR) capabilities, thereby ensuring lower computational cost while also providing sufficient resolution. Future work will focus on implementing tetrahedral cuts to the base hexahedral mesh structure in order to extract a fully unstructured hexahedra-dominant mesh describing the STL geometry, which can be used for fluid flow simulations.
ContributorsKannan, Karthik (Author) / Herrmann, Marcus (Thesis advisor) / Peet, Yulia (Committee member) / Frakes, David (Committee member) / Arizona State University (Publisher)
Created2014
154540-Thumbnail Image.png
Description
A moving overlapping mesh methodology that achieves spectral accuracy in space and up to second-order accuracy in time is developed for solution of unsteady incompressible flow equations in three-dimensional domains. The targeted applications are in aerospace and mechanical engineering domains and involve problems in turbomachinery, rotary aircrafts, wind turbines and

A moving overlapping mesh methodology that achieves spectral accuracy in space and up to second-order accuracy in time is developed for solution of unsteady incompressible flow equations in three-dimensional domains. The targeted applications are in aerospace and mechanical engineering domains and involve problems in turbomachinery, rotary aircrafts, wind turbines and others. The methodology is built within the dual-session communication framework initially developed for stationary overlapping meshes. The methodology employs semi-implicit spectral element discretization of equations in each subdomain and explicit treatment of subdomain interfaces with spectrally-accurate spatial interpolation and high-order accurate temporal extrapolation, and requires few, if any, iterations, yet maintains the global accuracy and stability of the underlying flow solver. Mesh movement is enabled through the Arbitrary Lagrangian-Eulerian formulation of the governing equations, which allows for prescription of arbitrary velocity values at discrete mesh points.

The stationary and moving overlapping mesh methodologies are thoroughly validated using two- and three-dimensional benchmark problems in laminar and turbulent flows. The spatial and temporal global convergence, for both methods, is documented and is in agreement with the nominal order of accuracy of the underlying solver.

Stationary overlapping mesh methodology was validated to assess the influence of long integration times and inflow-outflow global boundary conditions on the performance. In a turbulent benchmark of fully-developed turbulent pipe flow, the turbulent statistics are validated against the available data.

Moving overlapping mesh simulations are validated on the problems of two-dimensional oscillating cylinder and a three-dimensional rotating sphere. The aerodynamic forces acting on these moving rigid bodies are determined, and all results are compared with published data. Scaling tests, with both methodologies, show near linear strong scaling, even for moderately large processor counts.

The moving overlapping mesh methodology is utilized to investigate the effect of an upstream turbulent wake on a three-dimensional oscillating NACA0012 extruded airfoil. A direct numerical simulation (DNS) at Reynolds Number 44,000 is performed for steady inflow incident upon the airfoil oscillating between angle of attack 5.6 and 25 degrees with reduced frequency k=0.16. Results are contrasted with subsequent DNS of the same oscillating airfoil in a turbulent wake generated by a stationary upstream cylinder.
ContributorsMerrill, Brandon Earl (Author) / Peet, Yulia (Thesis advisor) / Herrmann, Marcus (Committee member) / Huang, Huei-Ping (Committee member) / Kostelich, Eric (Committee member) / Calhoun, Ronald (Committee member) / Arizona State University (Publisher)
Created2016
155243-Thumbnail Image.png
Description
A numerical study of chemotaxis in 3D turbulence is presented here. Direct Numerical

Simulation were used to calculate the nutrient uptake for both motile and non-motile bacterial

species and by applying the dynamical systems theory the effect of flow topology on the

variability of chemotaxis is analyzed. It is done

A numerical study of chemotaxis in 3D turbulence is presented here. Direct Numerical

Simulation were used to calculate the nutrient uptake for both motile and non-motile bacterial

species and by applying the dynamical systems theory the effect of flow topology on the

variability of chemotaxis is analyzed. It is done by injecting a highly localized patch of nutrient

in the turbulent flow, and analyzing the evolution of reaction associated with the observed

high and low stretching regions. The Gaussian nutrient patch is released at different locations

and the corresponding nutrient uptake is obtained. The variable stretching characteristics of

the flow is depicted by Lagrangian Coherent Structures and the roles they play in affecting the

uptake are analyzed. The Lagrangian Coherent Structures are quantified by the Finite Time

Lyapunov Exponents which is a measure of the average stretching experienced by the flow in

finite time. It is found that in high stretching regions, the motile bacteria are attracted to the

nutrient patch very quickly, but also dispersed quickly; whereas in low stretching regions the

bacteria respond slower towards the nutrient patch. However the total uptake is intricately

determined by stretching history. These reaction characteristics are reflected in the several

realizations of simulations. This helps in understanding turbulence intensity and how it affects

the uptake of the nutrient.
ContributorsGeorge, Jino (Author) / Tang, Wenbo (Thesis advisor) / Peet, Yulia (Thesis advisor) / Calhoun, Ronald (Committee member) / Arizona State University (Publisher)
Created2017
155810-Thumbnail Image.png
Description
The effect of reduced frequency on dynamic stall behavior of a pitching NACA0012 airfoil in a turbulent wake using Direct Numerical Simulations is presented in the current study. Upstream turbulence with dynamically oscillating blades and airfoils is associated with ambient flow unsteadiness and is encountered in many operating conditions. Wake

The effect of reduced frequency on dynamic stall behavior of a pitching NACA0012 airfoil in a turbulent wake using Direct Numerical Simulations is presented in the current study. Upstream turbulence with dynamically oscillating blades and airfoils is associated with ambient flow unsteadiness and is encountered in many operating conditions. Wake turbulence, a more realistic scenario for airfoils in operation, is generated using a small solid cylinder placed upstream, the vortices shed from which interact with the pitching airfoil affecting dynamic stall behavior.

A recently developed moving overlapping grid approach is used using a high-order Spectral Element Method (SEM) for spatial discretization combined with a dynamic time-stepping procedure allowing for up to third order temporal discretization. Two cases of reduced frequency (k = 0:16 and 0:25) for airfoil oscillation are investigated and the change in dynamic stall behavior with change in reduced frequency is studied and documented using flow-fields and aerodynamic coefficients (Drag, Lift and Pitching Moment) with a focus on understanding vortex system dynamics (including formation of secondary vortices) for different reduced frequencies and it’s affect on airfoil aerodynamic characteristics and fatigue life. Transition of the flow over the surface of an airfoil for both undisturbed and disturbed flow cases will also be discussed using Pressure coefficient and Skin Friction coefficient data for a given cycle combined with a wavelet analysis using Morse wavelets in MATLAB.
ContributorsGandhi, Anurag (Author) / Peet, Yulia (Thesis advisor) / Huang, Huei-Ping (Committee member) / Herrmann, Marcus (Committee member) / Arizona State University (Publisher)
Created2017
171849-Thumbnail Image.png
Description
This thesis focuses on the turbulent bluff body wakes in incompressible and compressible flows. An incompressible wake flow past an axisymmetric body of revolution at a diameter-based Reynolds number Re=5000 is investigated via a direct numerical simulation. It is followed by the development of a compressible solver using a split-form

This thesis focuses on the turbulent bluff body wakes in incompressible and compressible flows. An incompressible wake flow past an axisymmetric body of revolution at a diameter-based Reynolds number Re=5000 is investigated via a direct numerical simulation. It is followed by the development of a compressible solver using a split-form discontinuous Galerkin spectral element method framework with shock capturing. In the study on incompressible wake flows, three dominant coherent vortical motions are identified in the wake: the vortex shedding motion with the frequency of St=0.27, the bubble pumping motion with St=0.02, and the very-low-frequency (VLF) motion originated in the very near wake of the body with the frequencies St=0.002 and 0.005. The very-low-frequency motion is associated with a slow precession of the wake barycenter. The vortex shedding pattern is demonstrated to follow a reflectional symmetry breaking mode, with the detachment location rotating continuously and making a full circle over one vortex shedding period. The VLF radial motion with St=0.005 originates as m = 1 mode, but later transitions into m = 2 mode in the intermediate wake. Proper orthogonaldecomposition (POD) and dynamic mode decomposition (DMD) are further performed to analyze the spatial structure associated with the dominant coherent motions. Results of the POD and DMD analysis are consistent with the results of the azimuthal Fourier analysis. To extend the current incompressible code to be able to solve compressible flows, a computational methodology is developed using a high-order approximation for the compressible Navier-Stokes equations with discontinuities. The methodology is based on a split discretization framework with a summation-by-part operator. An entropy viscosity method and a subcell finite volume method are implemented to capture discontinuities. The developed high-order split-form with shock-capturing methodology is subject to a series of evaluation on cases from subsonic to hypersonic, from one-dimensional to three dimensional. The Taylor-Green vortex case and the supersonic sphere wake case show the capability to handle three-dimensional turbulent flows without and with the presence of shocks. It is also shown that higher-order approximations yield smaller errors than lower-order approximations, for the same number of total degrees of freedom.
ContributorsZhang, Fengrui (Author) / Peet, Yulia (Thesis advisor) / Kostelich, Eric (Committee member) / Kim, Jeonglae (Committee member) / Hermann, Marcus (Committee member) / Adrian, Ronald (Committee member) / Arizona State University (Publisher)
Created2022
168774-Thumbnail Image.png
Description
Modern aircraft propulsion systems such as the ultra high bypass ratio turbofan impose constraints on engine installation below the wing, causing jet–wing interactions. Similar interactions are encountered when a jet-powered aircraft takes off on airport runway or aircraft carrier deck. High-speed jet flow near a solid surface shows markedly different

Modern aircraft propulsion systems such as the ultra high bypass ratio turbofan impose constraints on engine installation below the wing, causing jet–wing interactions. Similar interactions are encountered when a jet-powered aircraft takes off on airport runway or aircraft carrier deck. High-speed jet flow near a solid surface shows markedly different turbulence characteristics compared with free jet, including attached turbulent jet and development of non-equilibrium boundary layer down- stream. Wall pressure fluctuations tend to be more unsteady and stronger, leading to increased vibration affecting aircraft cabin noise and modified jet noise radiation. Large-eddy simulation (LES) is useful to characterize turbulent jet flows over a solid surface as well as wall pressure distribution to promote physical understanding and modeling studies. In this study, LES is performed for an installed setup of a Mach 0.7 turbulent jet where the jet–plate distance is fixed at 2D where D is the nozzle-exit diameter. Unstructured-grid LES is used to validate the corresponding experiment (from literature). In addition, a high-fidelity numerical database is built for further analysis and modeling. Turbulence statistics and energy spectra show that agreement with the experimental measurement for the installed case is encouraging, paving a way for future analysis and modeling.
ContributorsTamhane, Nikhil (Author) / Kim, Jeongale (Thesis advisor) / Peet, Yulia (Thesis advisor) / Jeun, Jinah (Committee member) / Arizona State University (Publisher)
Created2022
158194-Thumbnail Image.png
Description
Compressible fluid flows involving multiple physical states of matter occur in both nature and technical applications such as underwater explosions and implosions, cavitation-induced bubble collapse in naval applications and Richtmyer-Meshkov type instabilities in inertial confinement fusion. Of particular interest is the atomization of fuels that enable shock-induced mixing of fuel

Compressible fluid flows involving multiple physical states of matter occur in both nature and technical applications such as underwater explosions and implosions, cavitation-induced bubble collapse in naval applications and Richtmyer-Meshkov type instabilities in inertial confinement fusion. Of particular interest is the atomization of fuels that enable shock-induced mixing of fuel and oxidizer in supersonic combustors. Due to low residence times and varying length scales, providing insight through physical experiments is both technically challenging and sometimes unfeasible. Numerical simulations can help provide detailed insight and aid in the engineering design of devices that can harness these physical phenomena.

In this research, computational methods were developed to accurately simulate phase interfaces in compressible fluid flows with a focus on targeting primary atomization. Novel numerical methods which treat the phase interface as a discontinuity, and as a smeared region were developed using low-dissipation, high-order schemes. The resulting methods account for the effects of compressibility, surface tension and viscosity. To aid with the varying length scales and high-resolution requirements found in atomization applications, an adaptive mesh refinement (AMR) framework is used to provide high-resolution only in regions of interest. The developed methods were verified with test cases involving strong shocks, high density ratios, surface tension effects and jumps in the equations of state, in one-, two- and three dimensions, obtaining good agreement with theoretical and experimental results. An application case of the primary atomization of a liquid jet injected into a Mach 2 supersonic crossflow of air is performed with the methods developed.
ContributorsKannan, Karthik (Author) / Herrmann, Marcus (Thesis advisor) / Huang, Huei-Ping (Committee member) / Lopez, Juan (Committee member) / Peet, Yulia (Committee member) / Wang, Liping (Committee member) / Arizona State University (Publisher)
Created2020