Matching Items (6)
Filtering by

Clear all filters

150973-Thumbnail Image.png
Description
In complex consumer-resource type systems, where diverse individuals are interconnected and interdependent, one can often anticipate what has become known as the tragedy of the commons, i.e., a situation, when overly efficient consumers exhaust the common resource, causing collapse of the entire population. In this dissertation I use mathematical modeling

In complex consumer-resource type systems, where diverse individuals are interconnected and interdependent, one can often anticipate what has become known as the tragedy of the commons, i.e., a situation, when overly efficient consumers exhaust the common resource, causing collapse of the entire population. In this dissertation I use mathematical modeling to explore different variations on the consumer-resource type systems, identifying some possible transitional regimes that can precede the tragedy of the commons. I then reformulate it as a game of a multi-player prisoner's dilemma and study two possible approaches for preventing it, namely direct modification of players' payoffs through punishment/reward and modification of the environment in which the interactions occur. I also investigate the questions of whether the strategy of resource allocation for reproduction or competition would yield higher fitness in an evolving consumer-resource type system and demonstrate that the direction in which the system will evolve will depend not only on the state of the environment but largely on the initial composition of the population. I then apply the developed framework to modeling cancer as an evolving ecological system and draw conclusions about some alternative approaches to cancer treatment.
ContributorsKareva, Irina (Author) / Castillo-Chavez, Carlos (Thesis advisor) / Collins, James (Committee member) / Nagy, John (Committee member) / Smith, Hal (Committee member) / Arizona State University (Publisher)
Created2012
153915-Thumbnail Image.png
Description
Modern measurement schemes for linear dynamical systems are typically designed so that different sensors can be scheduled to be used at each time step. To determine which sensors to use, various metrics have been suggested. One possible such metric is the observability of the system. Observability is a binary condition

Modern measurement schemes for linear dynamical systems are typically designed so that different sensors can be scheduled to be used at each time step. To determine which sensors to use, various metrics have been suggested. One possible such metric is the observability of the system. Observability is a binary condition determining whether a finite number of measurements suffice to recover the initial state. However to employ observability for sensor scheduling, the binary definition needs to be expanded so that one can measure how observable a system is with a particular measurement scheme, i.e. one needs a metric of observability. Most methods utilizing an observability metric are about sensor selection and not for sensor scheduling. In this dissertation we present a new approach to utilize the observability for sensor scheduling by employing the condition number of the observability matrix as the metric and using column subset selection to create an algorithm to choose which sensors to use at each time step. To this end we use a rank revealing QR factorization algorithm to select sensors. Several numerical experiments are used to demonstrate the performance of the proposed scheme.
ContributorsIlkturk, Utku (Author) / Gelb, Anne (Thesis advisor) / Platte, Rodrigo (Thesis advisor) / Cochran, Douglas (Committee member) / Renaut, Rosemary (Committee member) / Armbruster, Dieter (Committee member) / Arizona State University (Publisher)
Created2015
155984-Thumbnail Image.png
Description
Predicting resistant prostate cancer is critical for lowering medical costs and improving the quality of life of advanced prostate cancer patients. I formulate, compare, and analyze two mathematical models that aim to forecast future levels of prostate-specific antigen (PSA). I accomplish these tasks by employing clinical data of locally advanced

Predicting resistant prostate cancer is critical for lowering medical costs and improving the quality of life of advanced prostate cancer patients. I formulate, compare, and analyze two mathematical models that aim to forecast future levels of prostate-specific antigen (PSA). I accomplish these tasks by employing clinical data of locally advanced prostate cancer patients undergoing androgen deprivation therapy (ADT). I demonstrate that the inverse problem of parameter estimation might be too complicated and simply relying on data fitting can give incorrect conclusions, since there is a large error in parameter values estimated and parameters might be unidentifiable. I provide confidence intervals to give estimate forecasts using data assimilation via an ensemble Kalman Filter. Using the ensemble Kalman Filter, I perform dual estimation of parameters and state variables to test the prediction accuracy of the models. Finally, I present a novel model with time delay and a delay-dependent parameter. I provide a geometric stability result to study the behavior of this model and show that the inclusion of time delay may improve the accuracy of predictions. Also, I demonstrate with clinical data that the inclusion of the delay-dependent parameter facilitates the identification and estimation of parameters.
ContributorsBaez, Javier (Author) / Kuang, Yang (Thesis advisor) / Kostelich, Eric (Committee member) / Crook, Sharon (Committee member) / Gardner, Carl (Committee member) / Nagy, John (Committee member) / Arizona State University (Publisher)
Created2017
Description
Pogonomyrmex californicus (a species of harvester ant) colonies typically have anywhere from one to five queens. A queen can control the ratio of female to male offspring she produces, field research indicating that this ratio is genetically hardwired and does not change over time relative to other queens. Further, a

Pogonomyrmex californicus (a species of harvester ant) colonies typically have anywhere from one to five queens. A queen can control the ratio of female to male offspring she produces, field research indicating that this ratio is genetically hardwired and does not change over time relative to other queens. Further, a queen has an individual reproductive advantage if she has a small reproductive ratio. A colony, however, has a reproductive advantage if it has queens with large ratios, as these queens produce many female workers to further colony success. We have developed an agent-based model to analyze the "cheating" phenotype observed in field research, in which queens extend their lifespans by producing disproportionately many male offspring. The model generates phenotypes and simulates years of reproductive cycles. The results allow us to examine the surviving phenotypes and determine conditions under which a cheating phenotype has an evolutionary advantage. Conditions generating a bimodal steady state solution would indicate a cheating phenotype's ability to invade a cooperative population.
ContributorsEngel, Lauren Marie Agnes (Author) / Armbruster, Dieter (Thesis director) / Fewell, Jennifer (Committee member) / School of Mathematical and Statistical Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
155172-Thumbnail Image.png
Description
The increased number of novel pathogens that potentially threaten the human population has motivated the development of mathematical and computational modeling approaches for forecasting epidemic impact and understanding key environmental characteristics that influence the spread of diseases. Yet, in the case that substantial uncertainty surrounds the transmission process during a

The increased number of novel pathogens that potentially threaten the human population has motivated the development of mathematical and computational modeling approaches for forecasting epidemic impact and understanding key environmental characteristics that influence the spread of diseases. Yet, in the case that substantial uncertainty surrounds the transmission process during a rapidly developing infectious disease outbreak, complex mechanistic models may be too difficult to be calibrated quick enough for policy makers to make informed decisions. Simple phenomenological models that rely on a small number of parameters can provide an initial platform for assessing the epidemic trajectory, estimating the reproduction number and quantifying the disease burden from the early epidemic phase.

Chapter 1 provides background information and motivation for infectious disease forecasting and outlines the rest of the thesis.

In chapter 2, logistic patch models are used to assess and forecast the 2013-2015 West Africa Zaire ebolavirus epidemic. In particular, this chapter is concerned with comparing and contrasting the effects that spatial heterogeneity has on the forecasting performance of the cumulative infected case counts reported during the epidemic.

In chapter 3, two simple phenomenological models inspired from population biology are used to assess the Research and Policy for Infectious Disease Dynamics (RAPIDD) Ebola Challenge; a simulated epidemic that generated 4 infectious disease scenarios. Because of the nature of the synthetically generated data, model predictions are compared to exact epidemiological quantities used in the simulation.

In chapter 4, these models are applied to the 1904 Plague epidemic that occurred in Bombay. This chapter provides evidence that these simple models may be applicable to infectious diseases no matter the disease transmission mechanism.

Chapter 5, uses the patch models from chapter 2 to explore how migration in the 1904 Plague epidemic changes the final epidemic size.

The final chapter is an interdisciplinary project concerning within-host dynamics of cereal yellow dwarf virus-RPV, a plant pathogen from a virus group that infects over 150 grass species. Motivated by environmental nutrient enrichment due to anthropological activities, mathematical models are employed to investigate the relevance of resource competition to pathogen and host dynamics.
ContributorsPell, Bruce (Author) / Kuang, Yang (Thesis advisor) / Chowell-Puente, Gerardo (Committee member) / Nagy, John (Committee member) / Kostelich, Eric (Committee member) / Gardner, Carl (Committee member) / Arizona State University (Publisher)
Created2016
162238-Thumbnail Image.png
DescriptionUnderstanding the evolution of opinions is a delicate task as the dynamics of how one changes their opinion based on their interactions with others are unclear.
ContributorsWeber, Dylan (Author) / Motsch, Sebastien (Thesis advisor) / Lanchier, Nicolas (Committee member) / Platte, Rodrigo (Committee member) / Armbruster, Dieter (Committee member) / Fricks, John (Committee member) / Arizona State University (Publisher)
Created2021