Matching Items (4)
Filtering by

Clear all filters

152705-Thumbnail Image.png
Description
Cells live in complex environments and must be able to adapt to environmental changes in order to survive. The ability of a cell to survive and thrive in a changing environment depends largely on its ability to receive and respond to extracellular signals. Initiating with receptors, signal transduction cascades begin

Cells live in complex environments and must be able to adapt to environmental changes in order to survive. The ability of a cell to survive and thrive in a changing environment depends largely on its ability to receive and respond to extracellular signals. Initiating with receptors, signal transduction cascades begin translating extracellular signals into intracellular messages. Such signaling cascades are responsible for the regulation of cellular metabolism, cell growth, cell movement, transcription, translation, proliferation and differentiation. This dissertation seeks to dissect and examine critical signaling pathways involved in the regulation of proliferation in neural stem cells (Chapter 2) and the regulation of Glioblastoma Multiforme pathogenesis (GBM; Chapter 3). In Chapter 2 of this dissertation, we hypothesize that the mTOR signaling pathway plays a significant role in the determination of neural stem cell proliferation given its control of cell growth, metabolism and survival. We describe the effect of inhibition of mTOR signaling on neural stem cell proliferation using animal models of aging. Our results show that the molecular method of targeted inhibition may result in differential effects on neural stem cell proliferation as the use of rapamycin significantly reduced proliferation while the use of metformin did not. Abnormal signaling cascades resulting in unrestricted proliferation may lead to the development of brain cancer, such as GBM. In Chapter 3 of this dissertation, we hypothesize that the inhibition of the protein kinase, aPKCλ results in halted GBM progression (invasion and proliferation) due to its central location in multiple signaling cascades. Using in-vitro and in-vivo models, we show that aPKCλ functions as a critical node in GBM signaling as both cell-autonomous and non-cell-autonomous signaling converge on aPKCλ resulting in pathogenic downstream effects. This dissertation aims to uncover the molecular mechanisms involved in cell signaling pathways which are responsible for critical cellular effects such as proliferation, invasion and transcriptional regulation.
ContributorsKusne, Yael (Author) / Sanai, Nader (Thesis advisor) / Neisewander, Janet (Thesis advisor) / Tran, Nhan (Committee member) / Hammer, Ronald (Committee member) / Narayanan, Vinodh (Committee member) / Shapiro, Joan (Committee member) / Arizona State University (Publisher)
Created2014
134699-Thumbnail Image.png
Description
Nicotine use is an outstanding public health problem with associated social and economic consequences. Nicotine is an active alkaloid compound in tobacco and is recognized as a psychoactive drug. Preclinically, nicotine addiction and relapse can be modeled using a self-administration-reinstatement paradigm. Here, we used a nicotine self-administration and contingent cue-induced

Nicotine use is an outstanding public health problem with associated social and economic consequences. Nicotine is an active alkaloid compound in tobacco and is recognized as a psychoactive drug. Preclinically, nicotine addiction and relapse can be modeled using a self-administration-reinstatement paradigm. Here, we used a nicotine self-administration and contingent cue-induced reinstatement model to examine rapid, transient synaptic plasticity (t-SP) induced by nicotine cue-triggered motivation. Although preliminary, treatment with the NMDA GluN2B subunit antagonist, ifenprodil, reduced reinstated nicotine seeking, and increased the percentage of spines with smaller head diameters. Thus, future studies are needed to fully parse out the role of NAcore GluN2B receptors in cued nicotine seeking and t-SP.
ContributorsMccallum, Joseph John (Author) / Gipson-Reichardt, Cassandra (Thesis director) / Neisewander, Janet (Committee member) / Olive, Michael Foster (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
168687-Thumbnail Image.png
Description
Free coenzyme A (CoASH) carries acyl groups for the tricarboxylic acid (TCA) cycle and fatty acid metabolism, and donates acyl groups for protein posttranslational modifications. Cellular de novo CoASH synthesis starts with a pantothenate kinase (PANK1-3) phosphorylating pantothenate (vitamin B5). Mutations in PANK2 cause a subtype of neurodegeneration with brain

Free coenzyme A (CoASH) carries acyl groups for the tricarboxylic acid (TCA) cycle and fatty acid metabolism, and donates acyl groups for protein posttranslational modifications. Cellular de novo CoASH synthesis starts with a pantothenate kinase (PANK1-3) phosphorylating pantothenate (vitamin B5). Mutations in PANK2 cause a subtype of neurodegeneration with brain iron accumulation (NBIA). The PANKs have differential subcellular distribution and regulatory properties. However, the purpose of each PANK has remained obscure, with knockout mouse models presenting with mild phenotypes unless challenged with a high-fat diet. Based on PANK2’s known activation by palmitoylcarnitine, the PANK2-deficient cells were challenged with palmitic acid (PAL) added to glucose-containing media. The high nutrient mixture generated a surprising “starvation” profile of reduced proliferation, low ATP, AMPK activation, and autophagy upregulation in PANK2-deficient PAL-challenged cells. Further experiments showed that fatty acids accumulated and that PANK2-deficient cells had reduced respiration when provided with palmitoylcarnitine as a substrate, seemingly due to an impaired ability to oxidize fatty acids during PAL-induced Randle Cycle activation. Intriguingly, whole-cell CoASH levels remained stable despite the PAL-induced starvation phenotype, and increasing CoASH via PANK1β overexpression did not rescue the phenotype, demonstrating a unique role for PANK2 in fatty acid metabolism. Even though a direct CoASH deficiency was not detected, there were changes in short chain CoA-derivatives, including acetyl-CoA, succinyl-CoA, and butyryl-CoA, as well as evidence of impaired TCA cycle function. These impairments in both the TCA cycle and fatty acid oxidation implicate a role for PANK2 in regulating mitochondria CoA dynamics.
ContributorsNordlie, Sandra Maria (Author) / Kruer, Michael C (Thesis advisor) / Neisewander, Janet (Thesis advisor) / Padilla Lopez, Sergio (Committee member) / Katsanos, Christos (Committee member) / Arizona State University (Publisher)
Created2022
157848-Thumbnail Image.png
Description
Development of the cerebral cortex requires the complex integration of extracellular stimuli to affect changes in gene expression. Trophic stimulation activates specialized intracellular signaling cascades to instruct processes necessary for the elaborate cellular diversity, architecture, and function of the cortex. The canonical RAS/RAF/MEK/ERK (ERK/MAPK) cascade is a ubiquitously expressed kinase

Development of the cerebral cortex requires the complex integration of extracellular stimuli to affect changes in gene expression. Trophic stimulation activates specialized intracellular signaling cascades to instruct processes necessary for the elaborate cellular diversity, architecture, and function of the cortex. The canonical RAS/RAF/MEK/ERK (ERK/MAPK) cascade is a ubiquitously expressed kinase pathway that regulates crucial aspects of neurodevelopment. Mutations in the ERK/MAPK pathway or its regulators give rise to neurodevelopmental syndromes termed the “RASopathies.” RASopathy individuals present with neurological symptoms that include intellectual disability, ADHD, and seizures. The precise cellular mechanisms that drive neurological impairments in RASopathy individuals remain unclear. In this thesis, I aimed to 1) address how RASopathy mutations affect neurodevelopment, 2) elucidate fundamental requirements of ERK/MAPK in GABAergic circuits, and 3) determine how aberrant ERK/MAPK signaling disrupts GABAergic development.

Here, I show that a Noonan Syndrome-linked gain-of-function mutation Raf1L613V, drives modest changes in astrocyte and oligodendrocyte progenitor cell (OPC) density in the mouse cortex and hippocampus. Raf1L613V mutant mice exhibited enhanced performance in hippocampal-dependent spatial reference and working memory and amygdala-dependent fear learning tasks. However, we observed normal perineuronal net (PNN) accumulation around mutant parvalbumin-expressing (PV) interneurons. Though PV-interneurons were minimally affected by the Raf1L613V mutation, other RASopathy mutations converge on aberrant GABAergic development as a mediator of neurological dysfunction.

I therefore hypothesized interneuron expression of the constitutively active Mek1S217/221E (caMek1) mutation would be sufficient to perturb GABAergic circuit development. Interestingly, the caMek1 mutation selectively disrupted crucial PV-interneuron developmental processes. During embryogenesis, I detected expression of cleaved-caspase 3 (CC3) in the medial ganglionic eminence (MGE). Interestingly, adult mutant cortices displayed a selective 50% reduction in PV-expressing interneurons, but not other interneuron subtypes. PV-interneuron loss was associated with seizure-like activity in mutants and coincided with reduced perisomatic synapses. Mature mutant PV-interneurons exhibited somal hypertrophy and a substantial increase in PNN accumulation. Aberrant GABAergic development culminated in reduced behavioral response inhibition, a process linked to ADHD-like behaviors. Collectively, these data provide insight into the mechanistic underpinnings of RASopathy neuropathology and suggest that modulation of GABAergic circuits may be an effective therapeutic option for RASopathy individuals.
ContributorsHolter, Michael (Author) / Newbern, Jason (Thesis advisor) / Anderson, Trent (Committee member) / Mehta, Shwetal (Committee member) / Neisewander, Janet (Committee member) / Arizona State University (Publisher)
Created2019