Matching Items (6)
Filtering by

Clear all filters

153134-Thumbnail Image.png
Description
This dissertation shows that the central conceptual feature and explanatory motivation of theories of evolutionary directionality between 1890 and 1926 was as follows: morphological variation in the developing organism limits the possible outcomes of evolution in definite directions. Put broadly, these theories maintained a conceptual connection between development and evolution

This dissertation shows that the central conceptual feature and explanatory motivation of theories of evolutionary directionality between 1890 and 1926 was as follows: morphological variation in the developing organism limits the possible outcomes of evolution in definite directions. Put broadly, these theories maintained a conceptual connection between development and evolution as inextricably associated phenomena. This project develops three case studies. The first addresses the Swiss-German zoologist Theodor Eimer's book Organic Evolution (1890), which sought to undermine the work of noted evolutionist August Weismann. Second, the American paleontologist Edward Drinker Cope's Primary Factors (1896) developed a sophisticated system of inheritance that included the material of heredity and the energy needed to induce and modify ontogenetic phenomena. Third, the Russian biogeographer Leo Berg's Nomogenesis (1926) argued that the biological world is deeply structured in a way that prevents changes to morphology taking place in more than one or a few directions. These authors based their ideas on extensive empirical evidence of long-term evolutionary trajectories. They also sought to synthesize knowledge from a wide range of studies and proposed causes of evolution and development within a unified causal framework based on laws of evolution. While being mindful of the variation between these three theories, this project advances "Definitely Directed Evolution" as a term to designate these shared features. The conceptual coherence and reception of these theories shows that Definitely Directed Evolution from 1890 to 1926 is an important piece in reconstructing the wider history of theories of evolutionary directionality.
ContributorsUlett, Mark Andrew (Author) / Laubichler, Manfred D (Thesis advisor) / Hall, Brian K (Committee member) / Lynch, John (Committee member) / Maienschein, Jane (Committee member) / Smocovitis, Vassiliki B (Committee member) / Arizona State University (Publisher)
Created2014
154728-Thumbnail Image.png
Description
Several debilitating neurological disorders, such as Alzheimer's disease, stroke, and spinal cord injury, are characterized by the damage or loss of neuronal cell types in the central nervous system (CNS). Human neural progenitor cells (hNPCs) derived from human pluripotent stem cells (hPSCs) can proliferate extensively and differentiate into the various

Several debilitating neurological disorders, such as Alzheimer's disease, stroke, and spinal cord injury, are characterized by the damage or loss of neuronal cell types in the central nervous system (CNS). Human neural progenitor cells (hNPCs) derived from human pluripotent stem cells (hPSCs) can proliferate extensively and differentiate into the various neuronal subtypes and supporting cells that comprise the CNS. As such, hNPCs have tremendous potential for disease modeling, drug screening, and regenerative medicine applications. However, the use hNPCs for the study and treatment of neurological diseases requires the development of defined, robust, and scalable methods for their expansion and neuronal differentiation. To that end a rational design process was used to develop a vitronectin-derived peptide (VDP)-based substrate to support the growth and neuronal differentiation of hNPCs in conventional two-dimensional (2-D) culture and large-scale microcarrier (MC)-based suspension culture. Compared to hNPCs cultured on ECMP-based substrates, hNPCs grown on VDP-coated surfaces displayed similar morphologies, growth rates, and high expression levels of hNPC multipotency markers. Furthermore, VDP surfaces supported the directed differentiation of hNPCs to neurons at similar levels to cells differentiated on ECMP substrates. Here it has been demonstrated that VDP is a robust growth and differentiation matrix, as demonstrated by its ability to support the expansions and neuronal differentiation of hNPCs derived from three hESC (H9, HUES9, and HSF4) and one hiPSC (RiPSC) cell lines. Finally, it has been shown that VDP allows for the expansion or neuronal differentiation of hNPCs to quantities (>1010) necessary for drug screening or regenerative medicine purposes. In the future, the use of VDP as a defined culture substrate will significantly advance the clinical application of hNPCs and their derivatives as it will enable the large-scale expansion and neuronal differentiation of hNPCs in quantities necessary for disease modeling, drug screening, and regenerative medicine applications.
ContributorsVarun, Divya (Author) / Brafman, David (Thesis advisor) / Nikkhah, Mehdi (Committee member) / Stabenfeldt, Sarah (Committee member) / Arizona State University (Publisher)
Created2016
154562-Thumbnail Image.png
Description
Synthetic biology is a novel method that reengineers functional parts of natural genes of interest to build new biomolecular devices able to express as designed. There is increasing interest in synthetic biology due to wide potential applications in various fields such as clinics and fuel production. However, there are still

Synthetic biology is a novel method that reengineers functional parts of natural genes of interest to build new biomolecular devices able to express as designed. There is increasing interest in synthetic biology due to wide potential applications in various fields such as clinics and fuel production. However, there are still many challenges in synthetic biology. For example, many natural biological processes are poorly understood, and these could be more thoroughly studied through model synthetic gene networks. Additionally, since synthetic biology applications may have numerous design constraints, more inducer systems should be developed to satisfy different requirements for genetic design.

This thesis covers two topics. First, I attempt to generate stochastic resonance (SR) in a biological system. Synthetic bistable systems were chosen because the inducer range in which they exhibit bistability can satisfy one of the three requirements of SR: a weak periodic force is unable to make the transition between states happen. I synthesized several different bistable systems, including toggle switches and self-activators, to select systems matching another requirement: the system has a clear threshold between the two energy states. Their bistability was verified and characterized. At the same time, I attempted to figure out the third requirement for SR – an effective noise serving as the stochastic force – through one of the most widespread toggles, the mutual inhibition toggle, in both yeast and E. coli. A mathematic model for SR was written and adjusted.

Secondly, I began work on designing a new genetic system capable of responding to pulsed magnetic fields. The operators responding to pulsed magnetic stimuli in the rpoH promoter were extracted and reorganized. Different versions of the rpoH promoter were generated and tested, and their varying responsiveness to magnetic fields was recorded. In order to improve efficiency and produce better operators, a directed evolution method was applied with the help of a CRISPR-dCas9 nicking system. The best performing promoters thus far show a five-fold difference in gene expression between trials with and without the magnetic field.
ContributorsHu, Hao (Author) / Wang, Xiao (Thesis advisor) / Stabenfeldt, Sarah (Committee member) / Brafman, David (Committee member) / Arizona State University (Publisher)
Created2016
155320-Thumbnail Image.png
Description
Alzheimer’s disease (AD), despite over a century of research, does not have a clearly defined pathogenesis for the sporadic form that makes up the majority of disease incidence. A variety of correlative risk factors have been identified, including the three isoforms of apolipoprotein E (ApoE), a cholesterol transport protein in

Alzheimer’s disease (AD), despite over a century of research, does not have a clearly defined pathogenesis for the sporadic form that makes up the majority of disease incidence. A variety of correlative risk factors have been identified, including the three isoforms of apolipoprotein E (ApoE), a cholesterol transport protein in the central nervous system. ApoE ε3 is the wild-type variant with no effect on risk. ApoE ε2, the protective and most rare variant, reduces risk of developing AD by 40%. ApoE ε4, the risk variant, increases risk by 3.2-fold and 14.9-fold for heterozygous and homozygous representation respectively. Study of these isoforms has been historically complex, but the advent of human induced pluripotent stem cells (hiPSC) provides the means for highly controlled, longitudinal in vitro study. The effect of ApoE variants can be further elucidated using this platform by generating isogenic hiPSC lines through precise genetic modification, the objective of this research. As the difference between alleles is determined by two cytosine-thymine polymorphisms, a specialized CRISPR/Cas9 system for direct base conversion was able to be successfully employed. The base conversion method for transitioning from the ε3 to ε2 allele was first verified using the HEK293 cell line as a model with delivery via electroporation. Following this verification, the transfection method was optimized using two hiPSC lines derived from ε4/ε4 patients, with a lipofection technique ultimately resulting in successful base conversion at the same site verified in the HEK293 model. Additional research performed included characterization of the pre-modification genotype with respect to likely off-target sites and methods of isolating clonal variants.
ContributorsLakers, Mary Frances (Author) / Brafman, David (Thesis advisor) / Haynes, Karmella (Committee member) / Wang, Xiao (Committee member) / Arizona State University (Publisher)
Created2017
189241-Thumbnail Image.png
Description
The GGGGCC (G4C2) hexanucleotide repeat expansion (HRE) in the C9orf72 gene is the most common genetic abnormality associated with both amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), two devastatingly progressive neurodegenerative diseases. The discovery of this genetic link confirmed that ALS and FTD reside along a spectrum with clinical

The GGGGCC (G4C2) hexanucleotide repeat expansion (HRE) in the C9orf72 gene is the most common genetic abnormality associated with both amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), two devastatingly progressive neurodegenerative diseases. The discovery of this genetic link confirmed that ALS and FTD reside along a spectrum with clinical and pathological commonalities. Historically understood as diseases resulting in neuronal death, the role of non-neuronal cells like astrocytes is still wholly unresolved. With evidence of cortical neurodegeneration leading to cognitive impairments in C9orf72-ALS/FTD, there is a need to investigate the role of cortical astrocytes in this disease spectrum. Here, a patient-derived induced pluripotent stem cell (iPSC) cortical astrocyte model was developed to investigate consequences of C9orf72-HRE pathogenic features in this cell type. Although there were no significant C9orf72-HRE pathogenic features in cortical astrocytes, transcriptomic, proteomic and phosphoproteomic profiles elucidated global disease-related phenotypes. Specifically, aberrant expression of astrocytic-synapse proteins and secreted factors were identified. SPARCL1, a pro-synaptogenic secreted astrocyte factor was found to be selectively decreased in C9orf72-ALS/FTD iPSC-cortical astrocytes. This finding was further validated in human tissue analyses, indicating that cortical astrocytes in C9orf72-ALS/FTD exhibit a reactive transformation that is characterized by a decrease in SPARCL1 expression. Considering the evidence for substantial astrogliosis and synaptic failure leading to cognitive impairments in C9orf72-ALS/FTD, these findings represent a novel understanding of how cortical astrocytes may contribute to the cortical neurodegeneration in this disease spectrum.
ContributorsBustos, Lynette (Author) / Sattler, Rita (Thesis advisor) / Newbern, Jason (Committee member) / Zarnescu, Daniela (Committee member) / Brafman, David (Committee member) / Mehta, Shwetal (Committee member) / Arizona State University (Publisher)
Created2023
161295-Thumbnail Image.png
Description
Genome wide association studies (GWAS) have identified polymorphism in the Apolipoprotein E (APOE) gene to be the most prominent risk factor for Alzheimer’s disease (AD). Compared to individuals homozygous for the APOE3 variant, individuals with the APOE4 variant have a significantly elevated risk of AD. On the other hand, longitudinal

Genome wide association studies (GWAS) have identified polymorphism in the Apolipoprotein E (APOE) gene to be the most prominent risk factor for Alzheimer’s disease (AD). Compared to individuals homozygous for the APOE3 variant, individuals with the APOE4 variant have a significantly elevated risk of AD. On the other hand, longitudinal studies have shown that the presence of the APOE2 variant reduces lifetime risk of developing AD by 40 percent. While there has been significant research that has identified the risk-inducing effects of APOE4, the underlying mechanisms by which APOE2 influences AD onset and progression have not been extensively explored. The hallmarks of AD pathology manifest in human neurons in the form of extracellular amyloid deposits and intracellular neurofibrillary tangles, whereas astrocytes are the primary source of the APOE protein in the brain. In this study, an isogenic human induced pluripotent stem cell (hiPSC)-based system is utilized to demonstrate that conversion of APOE3 to APOE2 greatly reduced the production of amyloid-beta (Aβ) peptides in hiPSC-derived neural cultures. Mechanistically, analysis of pure populations of neurons and astrocytes derived from these neural cultures revealed that mitigating effects of APOE2 is mediated by cell autonomous and non-autonomous effects. In particular, it was demonstrated the reduction in Aβ and pathogenic β-C-terminal fragments (APP-βCTF) is potentially driven by a mechanism related to non-amyloidogenic processing of amyloid precursor protein (APP), suggesting a gain of protective function of the APOE2 variant. Together, this study provides insights into the risk-modifying effects associated with the APOE2 allele and establishes a platform to probe the mechanisms by which APOE2 enhances neuroprotection against AD.
ContributorsRaman, Sreedevi (Author) / Brafman, David (Thesis advisor) / Smith, Barbara (Committee member) / Plaiser, Christopher (Committee member) / Wang, Xiao (Committee member) / Tian, Xiaojun (Committee member) / Arizona State University (Publisher)
Created2021