Matching Items (3)
Filtering by

Clear all filters

136985-Thumbnail Image.png
Description
Within the field of psychopharmacology, there has been difficultly with studying the functional effects of dopamine at the D2 receptor apart from other dopamine receptors due to the lack of drugs that are selective for the D2 receptor. The purpose of this study was to observe the motivational and locomotor

Within the field of psychopharmacology, there has been difficultly with studying the functional effects of dopamine at the D2 receptor apart from other dopamine receptors due to the lack of drugs that are selective for the D2 receptor. The purpose of this study was to observe the motivational and locomotor effects of using three varying doses (1.0, 3.0, and 5.6 mg/kg) of a new, highly selective D2 antagonist, SV293. These doses were tested across five different conditions that explore the effects of controls, SV293 by itself, and in combination with cocaine. These tests are designed to separately assess the effects of the antagonist between drug-seeking behaviors and locomotor activity. The cue tests showed that SV293 reduced drug-seeking and increased response latency at the high dose, suggesting a decrease in motivational effects of cocaine-related cues. SV293 alone also reduced drug-seeking and increased response latency at the high dose, suggesting a decrease in motivation for cocaine. Cocaine in combination with SV293 did not produce any significant effects on drug-seeking behavior, suggesting that SV293 did not alter the motivational effects of cocaine itself. Spontaneous locomotor activity tests with SV293 alone showed no reduction in locomotor activity; however, the addition of cocaine showed a significant decrease in locomotor activity at the high dose of SV293. Overall, the 5.6 mg/kg dose of SV293 decreases drug-seeking behavior elicited by cocaine-related cues and environmental stimuli, as well as cocaine-induced locomotor activity. This selective D2 antagonism could ultimately help elucidate the mechanisms of other dopamine receptors with particular emphasis on their involvement with drug addiction. Key words: cocaine, SV293, D2, antagonists, dopamine
ContributorsLynn, Jeffrey Spencer (Author) / Neisewander, Janet (Thesis director) / Orchinik, Miles (Committee member) / Bastle, Ryan (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2014-05
134330-Thumbnail Image.png
Description
Abstract Cocaine is highly addictive because it exacerbates the action responsible for creating the feeling of "reward," which is controlled by the neurotransmitter dopamine. Dopamine receptors can be divided into five subtypes: D1, D2, D3, D4, and D5. The localization of D3 receptors is restricted to the mesolimbic pathway, which

Abstract Cocaine is highly addictive because it exacerbates the action responsible for creating the feeling of "reward," which is controlled by the neurotransmitter dopamine. Dopamine receptors can be divided into five subtypes: D1, D2, D3, D4, and D5. The localization of D3 receptors is restricted to the mesolimbic pathway, which is often called the "reward pathway." This pathway is associated with emotions, motivation, and behavior. There is evidence that these receptors are upregulated in response to the repeated use of psychostimulants, such as cocaine, making these receptors a potential target for pharmaceutical therapeutics for drug addiction. In the present study, two compounds selective for D3 receptors, MC-250041 and LS-3-134, were examined for their effects on spontaneous and cocaine-primed locomotor activity. The present study also aimed to examine the effects of MC-250041 and LS-3-134 on the number of lever presses and infusions under a progressive ratio (PR) schedule when subjects are trained to self-administer cocaine within an operant conditioning chamber. Based on the present research on D3 receptor compounds and D3Rs, I hypothesized that pretreatment with MC-250041 or LS-3-134 decreases cocaine self-administration under a progressive ratio (PR) schedule of cocaine reinforcement at doses that would have no effect on locomotor activity. The results showed no significant effects on spontaneous or cocaine-primed locomotor activity following an injection of MC-250041 (1, 3, 5.6 mg/kg IP). Similarly, there was no change in the amount of lever presses or drug infusions within an operant conditioning chamber at any of the examined doses of MC-250041 (3, 5.6, 10 mg/kg IP) during self-administration. LS-3-134 decreased cocaine-primed locomotor activity, as well as lever presses and infusions during self-administration at the 5.6 mg/kg dose; however, there was no effect on spontaneous locomotor activity at any of the examined doses (1, 3.2, 5.6 mg/kg IP). In conclusion, the results of the study suggest that LS-3-134 effectively reduced motivation for cocaine at the 5.6 mg/kg dose; whereas, MC-250041 was unsuccessful at warranting any significant effect on motivation for cocaine at any of the examined doses.
ContributorsMendoza, Rachel Ann (Author) / Neisewander, Janet (Thesis director) / Olive, Foster (Committee member) / Powell, Greg (Committee member) / School of Social Transformation (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
131493-Thumbnail Image.png
Description
The epidemic of drug addiction continues to grow at an alarming rate and cocaine-related overdoses have increased by more than 33% over the last decade. Cocaine targets the mesolimbic reward system in the brain to produce the “high” felt when taking cocaine. There is currently no single cure for psychostimulant

The epidemic of drug addiction continues to grow at an alarming rate and cocaine-related overdoses have increased by more than 33% over the last decade. Cocaine targets the mesolimbic reward system in the brain to produce the “high” felt when taking cocaine. There is currently no single cure for psychostimulant abuse, but researchers continue to find viable therapeutic options. Dopamine receptors have been a recent target for researchers. We tested a novel D3R-antagonist, SWR-5, with 905-fold D3/D2 selectivity, on addiction using a rat self- administration model and hypothesized that it would reduce motivation for cocaine. SWR-5 significantly reduced cocaine intake on a high-effort PR schedule at a dose of 10 mg/kg but did not affect sucrose intake. Also, SWR-5 did not affect either spontaneous or cocaine-induced locomotion. From our results, we concluded that SWR-5 affects motivation for cocaine, not sucrose, and does not produce adverse locomotor effects. Further research would include taking a behavioral economics approach to determine the cost/benefit ratio of taking the drug, as well as performing cue reinstatement tests to solidify whether SWR-5 plays a role in cocaine-seeking behavior.
ContributorsMokbel, Ayleen Marie Halim (Co-author) / Neisewander, Janet (Thesis director) / Sanabria, Federico (Committee member) / Vannan, Annika (Committee member) / School of International Letters and Cultures (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05